
Math 541 Lecture #4
II.1: Partitioning open subsets of RN

II.2: Limits of sets, characteristic functions, and σ-algebras

1. Partitioning open subsets of RN . How do we compute the volume of an open set
in RN? If we could partition the open set into a countable union of “nice” subsets whose
volumes are easy to compute, then the volume would be the sum of a series.

The “nice” subsets we will use are a particular type of cube whose volume is readily
computable.

Let q = (q1, q2, . . . , qN) ∈ ZN , a N -tuple of integers.

For a fixed positive integer p and a fixed N -tuple of integers q, we define the 1
2
-closed

dyadic cube

Qp,q =

{
x = (x1, x2, . . . , xn) ∈ RN :

qi − 1

2p
< xi ≤

qi
2p
, i = 1, 2, . . . , N

}
.

All of RN can be partitioned into 1
2
-closed dyadic cubes disjointly by slicing RN by the

hyperplanes {xj = qlj2
−p} for j = 1, 2, . . . , N and qlj ranges over Z.

Thus for each p ∈ N we have

RN =
⋃
q∈ZN

Qp,q,

where
Qp,q ∩Qp,q′ = ∅ for all q 6= q′.

Proposition 1.2. Each nonempty open subset E of RN is the union of a countable
collection of 1

2
-closed dyadic cubes with pairwise disjoint interiors.

Proof. (The proof in the Ed.1 of the book is jumbled).

Either finitely many (including 0) or countably many of the 1
2
-closed dyadic cubes Q1,q

are subsets of E, and we denote their union by

Q1 =
{⋃
Q1,q : Q1,q ⊂ E

}
⊂ E.

Either finitely many (including 0) or countably many of the 1
2
-closed dyadic cubes Q2,q

are subsets of E −Q1, and we denote their union by

Q2 =
{⋃
Q2,q : Q2,q ⊂ E −Q1

}
⊂ E.

Continuing in this fashion determines for all n ∈ N, the sets

Qn =

{⋃
Qn,q : Qn,q ⊂ E −

n−1⋃
j=1

Qj

}
⊂ E.

The union of all the Qn is a subset of E.

For each x ∈ E, there is a 1
2
-closed dyadic cube Qn,q for a smallest n ∈ N and some

q ∈ ZN satisfying x ∈ Qn,q ⊂ E, and thus the union of the Qn is all of E. �



2. Limits of sets, characteristic functions, and σ-algebras. The upper and
lower limits of a sequence of subsets {En} in some set X are

E ′′ =
∞⋂
n=1

∞⋃
j=n

Ej = lim supEn, E ′ =
∞⋃
n=1

∞⋂
j=n

Ej = lim inf En.

The sequence {En} converges (to a set) if E ′′ = E ′, and we write

E ′′ = E ′ = limEn.

A sequence {En} is monotone increasing if En ⊂ En+1 for all n.

A monotone increasing {En} has a limit because

E ′′ =
∞⋂
n=1

∞⋃
j=n

Ej =
∞⋃
n=1

En, E ′ =
∞⋃
n=1

∞⋂
j=n

Ej =
∞⋃
n=1

En,

are the same, where ∪∞j=nEj is the same set for all n, and ∩∞j=nEj = En for each n.

A sequence {En} is monotone decreasing if En ⊃ En+1 for all n.

A monotone decreasing sequence {En} has a limit because

E ′′ =
∞⋂
n=1

∞⋃
j=n

Ej =
∞⋂
n=1

En, E ′ =
∞⋃
n=1

∞⋂
j=n

Ej =
∞⋂
n=1

En,

are the same, where ∪∞j=nEj = En for each n, and ∩∞j=nEn is the same set for all n.

For the limit of {En} to exist, it need not be monotone.

It is also possible for each {En} to be infinite while the limit is the empty set: the
sequence of closed intervals En = [n,∞) is monotone decreasing, while the limit is the
empty set.

The characteristic function χE of set E in X is the real-valued function defined by

χE =

{
1 if x ∈ E,
0 if x 6∈ E.

Proposition. For a sequence of set {En} we have

χ∪∞j=nEj
= sup

j≥n
χEj

and χ∩∞j=nEj
= inf

j≥n
χEj

.

Proof. For x ∈ X, we have χ∪∞j=nEj
(x) = 1 if and only if x ∈ ∪∞j=nEj if and only if x ∈ Ej

for some j ≥ n if and only if supj≥n χEj
(x) = 1.

We also have χ∩∞j=nEj
(x) = 1 if and only if x ∈ ∩∞j=nEj if and only if x ∈ Ej for all j ≥ n

if and only if infj≥n χEj
(x) = 1. �



A set E in a topological space {X;U} is of type Fσ if E is the union of a countable
collection of closed subsets of X.

For example, the open interval (−1, 1) is the union of the closed sets [−1 + 1/n, 1− 1/n].

A set E in a topological space {X;U} is of type Gδ if E is the intersection of a countable
collection of open subsets of X.

For example, the closed interval [−1, 1] is the intersection of the open sets (−1−1/n, 1 +
1/n).

A set E is of type Fσδ if it is the countable intersection of sets of type Fσ.

A set E is of type Gδσ if it is the countable union of sets of type Gδ.
Sets of type Fσδσ and Gδσδ, etc., are similarly defined.

A collection A of subsets of a set X is an algebra of sets if it contains the empty set,
if the union of any two elements in A is in A, and if the complement of any element of
A is in A.

It follows that an algebra of sets A in X contains X and the union and intersection of
finitely many elements of A.

A collection of subsets A of a set X is a σ-algebra if A is an algebra for which the union
of a countable collection of elements of A is in A.

The power set A = 2X = P(X) is a σ-algebra known as the discrete σ-algebra.

The collection A = {∅, X} is a σ-algebra known as the trivial σ-algebra.

Proposition 2.1. For a given collection O of subsets of X, there exists a smallest
σ-algebra AO that contains O.

Proof. Let F be the collection of all σ-algebras that contain O.

The collection F is nonempty because it contains the discrete σ-algebra P(X).

Define
AO =

⋂
{A : A ∈ F} .

Two sets A1, A2 ∈ AO belong to every σ-algebra in F , so the union A1 ∪ A2 belongs to
every σ-algebra in F , and hence A1 ∪ A2 in AO.

A set A ∈ AO belongs to every σ-algebra in F , so the complement Ac belongs to every
σ-algebra in F , and hence Ac is in AO.

Thus AO is an algebra of sets.

Each countable collection {An} in AO belongs to every element of F and so the union
∪∞n=1An belongs to every element of F and hence ∪∞n=1An belongs to AO.

Thus AO is a σ-algebra.

It is the smallest containing O because if A′ is another σ-algebra containing O, then
A′ ∈ F , so that AO ⊂ A′. �

The Borel σ-algebra B is the smallest σ-algebra containing all of the open subsets U of
X; it contains all of the closed subsets of X, and all of the Fσ, Gδ, Fσδ, Gδσ, etc., type
sets.


