Math 541 Lecture #4

I1.1: Partitioning open subsets of RV
I1.2: Limits of sets, characteristic functions, and o-algebras

1. Partitioning open subsets of R"Y. How do we compute the volume of an open set
in RY? If we could partition the open set into a countable union of “nice” subsets whose
volumes are easy to compute, then the volume would be the sum of a series.

The “nice” subsets we will use are a particular type of cube whose volume is readily
computable.

Let ¢ = (q1,¢2,...,qn) € ZN, a N-tuple of integers.

For a fixed positive integer p and a fixed N-tuple of integers ¢, we define the %—closed
dyadic cube
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Qp’q:{I:(Jfl,x27..,,xn)ERN:q2p <x<q Z:1,2,...,N}.
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All of RY can be partitioned into 1-closed dyadic cubes disjointly by slicing RY by the

hyperplanes {z; = ¢;,277} for j = 1,2,..., N and ¢, ranges over Z.
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Thus for each p € N we have

where

Qs NQpy =0forall g+#q.

Proposition 1.2. Each nonempty open subset E of RY is the union of a countable
collection of %—Closed dyadic cubes with pairwise disjoint interiors.

Proof. (The proof in the Ed.1 of the book is jumbled).

Either finitely many (including 0) or countably many of the %—closed dyadic cubes Q; 4
are subsets of F, and we denote their union by

Q = {U Q14:Q14C E} CE.

Either finitely many (including 0) or countably many of the %—closed dyadic cubes Qs
are subsets of £ — Q;, and we denote their union by

Qy = {UQ2,q 1 Qg C E— Q1} C E.

Continuing in this fashion determines for all n € N, the sets

n—1
Qn: {UQn,q:Qn,qCE_ UQ]} CE

j=1
The union of all the Q,, is a subset of E.

For each z € F, there is a 3-closed dyadic cube Q,, for a smallest n € N and some
q € Z" satisfying x € Qnq C I, and thus the union of the Q,, is all of E. O



2. Limits of sets, characteristic functions, and c-algebras. The upper and
lower limits of a sequence of subsets {E,,} in some set X are

= ﬁ G E; =limsup E,, E' = G ﬁ E; =liminf E,.

n=1j=n n=1j=n

The sequence {E,} converges (to a set) if E” = E’, and we write

E'=FE =1lmE,.

A sequence {E,} is monotone increasing if F, C FE, . for all n.

A monotone increasing {E, } has a limit because

-AU&s-Us. #-UNE-Us.

n=1j=n n=1j=n

are the same, where U2, F; is the same set for all n, and N2, E; = E, for each n.
A sequence {E,} is monotone decreasing if F, D F, . for all n.

A monotone decreasing sequence {E,} has a limit because

-AUE-Nee £=UNE-N 5.

n=1j=n n=1j=n

are the same, where U2, F; = F), for each n, and N2, E,, is the same set for all n.
For the limit of {E,} to exist, it need not be monotone.

It is also possible for each {E,} to be infinite while the limit is the empty set: the
sequence of closed intervals E, = [n,00) is monotone decreasing, while the limit is the
empty set.

The characteristic function yg of set E in X is the real-valued function defined by

_J1 ifrek,
XE=N0 ite g B

Proposition. For a sequence of set {E,} we have

Xuse E; = sup XE,; and Xnse, E; = mf XE;-
j>n
Proof. For z € X, we have xux g, (2) = 1if and only if z € UjZ, Ej; if and only if z € E
for some j > n if and only if sup;., xg,(z) = 1.
We also have Xm;inEj(m) = lif and only if x € N%2, B if and only if z € Ej for all j > n
if and only if inf;>, xg, (z) = 1. O



A set E in a topological space {X;U} is of type F, if F is the union of a countable
collection of closed subsets of X.

For example, the open interval (—1,1) is the union of the closed sets [-1+1/n,1—1/n].

A set F in a topological space {X;U} is of type Gs if E is the intersection of a countable
collection of open subsets of X.

For example, the closed interval [—1, 1] is the intersection of the open sets (—1—1/n,1+
1/n).

A set E is of type F,s if it is the countable intersection of sets of type F,.

A set E is of type Gs, if it is the countable union of sets of type Gs.

Sets of type F, s, and Gsys, ete., are similarly defined.

A collection A of subsets of a set X is an algebra of sets if it contains the empty set,
if the union of any two elements in A is in A, and if the complement of any element of
Aisin A.

It follows that an algebra of sets A in X contains X and the union and intersection of
finitely many elements of A.

A collection of subsets A of a set X is a g-algebra if A is an algebra for which the union
of a countable collection of elements of A is in A.

The power set A = 2% = P(X) is a o-algebra known as the discrete o-algebra.
The collection A = {0, X'} is a o-algebra known as the trivial o-algebra.

Proposition 2.1. For a given collection O of subsets of X, there exists a smallest
o-algebra Ap that contains O.

Proof. Let F be the collection of all g-algebras that contain O.
The collection F is nonempty because it contains the discrete o-algebra P(X).
Define
Ao=[{A: Ac F}.
Two sets Ay, Ay € Ap belong to every o-algebra in F, so the union A; U Ay belongs to
every o-algebra in F, and hence A; U As in Ap.

A set A € Ap belongs to every o-algebra in F, so the complement A° belongs to every
o-algebra in F, and hence A€ is in Ap.

Thus Ap is an algebra of sets.

Each countable collection {4, } in Ap belongs to every element of F and so the union
U, A, belongs to every element of F and hence U2, A,, belongs to Ap.

Thus Ap is a o-algebra.

It is the smallest containing O because if A’ is another o-algebra containing O, then

A € F, so that Ap C A'. O

The Borel g-algebra B is the smallest o-algebra containing all of the open subsets U of
X; it contains all of the closed subsets of X, and all of the F,, Gs, F,s, Gso, etc., type
sets.



