Math 541 Lecture #4 II.1: Partitioning open subsets of \mathbb{R}^N II.2: Limits of sets, characteristic functions, and σ -algebras

1. Partitioning open subsets of \mathbb{R}^N . How do we compute the volume of an open set in \mathbb{R}^N ? If we could partition the open set into a countable union of "nice" subsets whose volumes are easy to compute, then the volume would be the sum of a series.

The "nice" subsets we will use are a particular type of cube whose volume is readily computable.

Let $q = (q_1, q_2, \ldots, q_N) \in \mathbb{Z}^N$, a *N*-tuple of integers.

For a fixed positive integer p and a fixed N-tuple of integers q, we define the $\frac{1}{2}$ -closed dyadic cube

$$\mathcal{Q}_{p,q} = \left\{ x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^N : \frac{q_i - 1}{2^p} < x_i \le \frac{q_i}{2^p}, \ i = 1, 2, \dots, N \right\}.$$

All of \mathbb{R}^N can be partitioned into $\frac{1}{2}$ -closed dyadic cubes disjointly by slicing \mathbb{R}^N by the hyperplanes $\{x_j = q_{l_j} 2^{-p}\}$ for j = 1, 2, ..., N and q_{l_j} ranges over \mathbb{Z} .

Thus for each $p \in \mathbb{N}$ we have

$$\mathbb{R}^N = igcup_{q\in\mathbb{Z}^N} \mathcal{Q}_{p,q},$$

where

$$\mathcal{Q}_{p,q} \cap \mathcal{Q}_{p,q'} = \emptyset$$
 for all $q \neq q'$.

Proposition 1.2. Each nonempty open subset E of \mathbb{R}^N is the union of a countable collection of $\frac{1}{2}$ -closed dyadic cubes with pairwise disjoint interiors.

Proof. (The proof in the Ed.1 of the book is jumbled).

Either finitely many (including 0) or countably many of the $\frac{1}{2}$ -closed dyadic cubes $\mathcal{Q}_{1,q}$ are subsets of E, and we denote their union by

$$\mathcal{Q}_1 = \left\{ \bigcup \mathcal{Q}_{1,q} : \mathcal{Q}_{1,q} \subset E \right\} \subset E.$$

Either finitely many (including 0) or countably many of the $\frac{1}{2}$ -closed dyadic cubes $\mathcal{Q}_{2,q}$ are subsets of $E - \mathcal{Q}_1$, and we denote their union by

$$\mathcal{Q}_2 = \left\{ \bigcup \mathcal{Q}_{2,q} : \mathcal{Q}_{2,q} \subset E - \mathcal{Q}_1 \right\} \subset E.$$

Continuing in this fashion determines for all $n \in \mathbb{N}$, the sets

$$\mathcal{Q}_n = \left\{ \bigcup \mathcal{Q}_{n,q} : \mathcal{Q}_{n,q} \subset E - \bigcup_{j=1}^{n-1} \mathcal{Q}_j \right\} \subset E.$$

The union of all the \mathcal{Q}_n is a subset of E.

For each $x \in E$, there is a $\frac{1}{2}$ -closed dyadic cube $\mathcal{Q}_{n,q}$ for a smallest $n \in \mathbb{N}$ and some $q \in \mathbb{Z}^N$ satisfying $x \in \mathcal{Q}_{n,q} \subset E$, and thus the union of the \mathcal{Q}_n is all of E.

2. Limits of sets, characteristic functions, and σ -algebras. The upper and lower limits of a sequence of subsets $\{E_n\}$ in some set X are

$$E'' = \bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} E_j = \limsup E_n, \quad E' = \bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} E_j = \liminf E_n$$

The sequence $\{E_n\}$ converges (to a set) if E'' = E', and we write

$$E'' = E' = \lim E_n.$$

A sequence $\{E_n\}$ is **monotone increasing** if $E_n \subset E_{n+1}$ for all n.

A monotone increasing $\{E_n\}$ has a limit because

$$E'' = \bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} E_j = \bigcup_{n=1}^{\infty} E_n, \quad E' = \bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} E_j = \bigcup_{n=1}^{\infty} E_n,$$

are the same, where $\bigcup_{j=n}^{\infty} E_j$ is the same set for all n, and $\bigcap_{j=n}^{\infty} E_j = E_n$ for each n. A sequence $\{E_n\}$ is **monotone decreasing** if $E_n \supset E_{n+1}$ for all n.

A monotone decreasing sequence $\{E_n\}$ has a limit because

$$E'' = \bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} E_j = \bigcap_{n=1}^{\infty} E_n, \quad E' = \bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} E_j = \bigcap_{n=1}^{\infty} E_n,$$

are the same, where $\bigcup_{j=n}^{\infty} E_j = E_n$ for each n, and $\bigcap_{j=n}^{\infty} E_n$ is the same set for all n. For the limit of $\{E_n\}$ to exist, it need not be monotone.

It is also possible for each $\{E_n\}$ to be infinite while the limit is the empty set: the sequence of closed intervals $E_n = [n, \infty)$ is monotone decreasing, while the limit is the empty set.

The characteristic function χ_E of set E in X is the real-valued function defined by

$$\chi_E = \begin{cases} 1 & \text{if } x \in E, \\ 0 & \text{if } x \notin E. \end{cases}$$

Proposition. For a sequence of set $\{E_n\}$ we have

$$\chi_{\bigcup_{j=n}^{\infty}E_j} = \sup_{j\geq n} \chi_{E_j} \text{ and } \chi_{\bigcap_{j=n}^{\infty}E_j} = \inf_{j\geq n} \chi_{E_j}.$$

Proof. For $x \in X$, we have $\chi_{\bigcup_{j=n}^{\infty} E_j}(x) = 1$ if and only if $x \in \bigcup_{j=n}^{\infty} E_j$ if and only if $x \in E_j$ for some $j \ge n$ if and only if $\sup_{j\ge n} \chi_{E_j}(x) = 1$.

We also have $\chi_{\bigcap_{j=n}^{\infty} E_j}(x) = 1$ if and only if $x \in \bigcap_{j=n}^{\infty} E_j$ if and only if $x \in E_j$ for all $j \ge n$ if and only if $\inf_{j\ge n} \chi_{E_j}(x) = 1$.

A set E in a topological space $\{X; \mathcal{U}\}$ is of type \mathcal{F}_{σ} if E is the union of a countable collection of closed subsets of X.

For example, the open interval (-1, 1) is the union of the closed sets [-1+1/n, 1-1/n]. A set *E* in a topological space $\{X; \mathcal{U}\}$ is **of type** \mathcal{G}_{δ} if *E* is the intersection of a countable collection of open subsets of *X*.

For example, the closed interval [-1, 1] is the intersection of the open sets (-1 - 1/n, 1 + 1/n).

A set E is of type $\mathcal{F}_{\sigma\delta}$ if it is the countable intersection of sets of type \mathcal{F}_{σ} .

A set *E* is of type $\mathcal{G}_{\delta\sigma}$ if it is the countable union of sets of type \mathcal{G}_{δ} .

Sets of type $\mathcal{F}_{\sigma\delta\sigma}$ and $\mathcal{G}_{\delta\sigma\delta}$, etc., are similarly defined.

A collection \mathcal{A} of subsets of a set X is an **algebra of sets** if it contains the empty set, if the union of any two elements in \mathcal{A} is in \mathcal{A} , and if the complement of any element of \mathcal{A} is in \mathcal{A} .

It follows that an algebra of sets \mathcal{A} in X contains X and the union and intersection of finitely many elements of \mathcal{A} .

A collection of subsets \mathcal{A} of a set X is a σ -algebra if \mathcal{A} is an algebra for which the union of a countable collection of elements of \mathcal{A} is in \mathcal{A} .

The power set $\mathcal{A} = 2^X = \mathcal{P}(X)$ is a σ -algebra known as the **discrete** σ -algebra.

The collection $\mathcal{A} = \{\emptyset, X\}$ is a σ -algebra known as the **trivial** σ -algebra.

Proposition 2.1. For a given collection \mathcal{O} of subsets of X, there exists a smallest σ -algebra $\mathcal{A}_{\mathcal{O}}$ that contains \mathcal{O} .

Proof. Let \mathcal{F} be the collection of all σ -algebras that contain \mathcal{O} .

The collection \mathcal{F} is nonempty because it contains the discrete σ -algebra $\mathcal{P}(X)$.

Define

$$\mathcal{A}_{\mathcal{O}} = \bigcap \left\{ \mathcal{A} : \mathcal{A} \in \mathcal{F} \right\}.$$

Two sets $A_1, A_2 \in \mathcal{A}_{\mathcal{O}}$ belong to every σ -algebra in \mathcal{F} , so the union $A_1 \cup A_2$ belongs to every σ -algebra in \mathcal{F} , and hence $A_1 \cup A_2$ in $\mathcal{A}_{\mathcal{O}}$.

A set $A \in \mathcal{A}_{\mathcal{O}}$ belongs to every σ -algebra in \mathcal{F} , so the complement A^c belongs to every σ -algebra in \mathcal{F} , and hence A^c is in $\mathcal{A}_{\mathcal{O}}$.

Thus $\mathcal{A}_{\mathcal{O}}$ is an algebra of sets.

Each countable collection $\{A_n\}$ in $\mathcal{A}_{\mathcal{O}}$ belongs to every element of \mathcal{F} and so the union $\bigcup_{n=1}^{\infty} A_n$ belongs to every element of \mathcal{F} and hence $\bigcup_{n=1}^{\infty} A_n$ belongs to $\mathcal{A}_{\mathcal{O}}$.

Thus $\mathcal{A}_{\mathcal{O}}$ is a σ -algebra.

It is the smallest containing \mathcal{O} because if \mathcal{A}' is another σ -algebra containing \mathcal{O} , then $\mathcal{A}' \in \mathcal{F}$, so that $\mathcal{A}_{\mathcal{O}} \subset \mathcal{A}'$.

The **Borel** σ -algebra \mathcal{B} is the smallest σ -algebra containing all of the open subsets \mathcal{U} of X; it contains all of the closed subsets of X, and all of the \mathcal{F}_{σ} , \mathcal{G}_{δ} , $\mathcal{F}_{\sigma\delta}$, $\mathcal{G}_{\delta\sigma}$, etc., type sets.