
Math 541 Lecture #5
II.3: Measures, Part I

3. Measures. The set of extended real numbers is denoted by

R∗ = {−∞} ∪ R ∪ {∞},

where for any c ∈ R we define ±∞± c = ±∞ and (±∞)c = (±∞)sign(c).

We further set ∞+∞ =∞ and −∞−∞ = −∞, but leave ∞−∞ undefined.

Let A be a σ-algebra of sets in X.

A function µ : A → R∗ is countably additive if for any finite or countable collection
of pairwise disjoint sets {En} in A, we have

µ
(⋃

En

)
=
∑

µ(En).

A function µ : A → R∗ is countably subadditive if for any finite or countable collection
{En} of sets in A we have

µ
(⋃

En

)
≤
∑

µ(En).

A measure on a σ-algebra A is a countably additive function µ : A → R∗ such that
µ(A) ≥ 0 for all A ∈ A, and µ(A) <∞ for some A ∈ A.

A measure space is a triple {X,A, µ} where A is a σ-algebra in X and µ : A → R∗ is
a measure.

Proposition 3.1. For a σ-algebra A in a set X, suppose µ : A → R∗ is a measure.

(i) For any A,B ∈ A with A ⊂ B, we have

µ(A) ≤ µ(B) (known as monotonicity), and,

µ(B − A) = µ(B)− µ(A) if µ(A) <∞.

(ii) µ(∅) = 0.

(iii) For any A,B ∈ A, we have if µ(A ∩B) <∞ then

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B).

(iv) µ is countably subadditive.

(v) For a countable collection {En} in A we have

lim inf µ(En) ≥ µ(lim inf En).

(vi) For a countable collection {En} in A, if µ(∪En) <∞, then

lim supµ(En) ≤ µ(lim supEn).



Proof. (i) Since B = A∪ (B−A) is a disjoint union of sets in A, the countable additivity
of µ gives

µ(B) = µ(A) + µ(B − A).

Since µ(B − A) ≥ 0, we obtain µ(A) ≤ µ(B).

If µ(A) <∞, we avoid the undefined ∞−∞ to get µ(B − A) = µ(B)− µ(A).

(ii) There is a set E ∈ A for which µ(E) <∞.

Applying part (i) with A = E and B = E gives

µ(∅) = µ(E − E) = µ(E)− µ(E) = 0.

(iii) Since A∪B = A∪(B−(A∩B)) is a disjoint union of sets in A, we have by countable
additivity of µ that

µ(A ∪B) = µ(A) + µ(B − (A ∩B)).

Since A ∩ B ⊂ B and µ(A ∩ B) < ∞, we have by part (i) that µ(B − (A ∩ B)) =
µ(B)− µ(A ∩B), and so

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B).

(iv) Let {En} be a finite or countable collection of sets in A.

If we set B1 = E1, and inductively set

Bn = En −
n−1⋃
j=1

Ej, n ≥ 2,

then {Bn} is a finite or countable collection of pairwise disjoint sets in A whose union is
the same as the union of {En}.
Thus by countable additivity of µ and part (i) we have

µ
(⋃

En

)
= µ

(⋃
Bn

)
=
∑

µ(Bn) =
∑

µ

(
En −

n−1⋃
j=1

Ej

)
≤
∑

µ(En).

(v) Let {En} be a countable collection in A.

Recall the definition of the lim inf applied to the sequence {µ(En)}:

lim inf µ(En) = sup
n≥1

inf
j≥n

µ(Ej) = lim
n→∞

inf
j≥n

µ(Ej).

If lim inf µ(En) =∞, then trivially we have lim inf µ(En) ≥ µ(lim inf En).

So suppose that lim inf µ(En) <∞.

Then for every n ∈ N we have infinitely many k ≥ n such that µ(Ek) <∞.

Set Dn = ∩j≥nEj ∈ A.



Then

lim inf En =
∞⋃
n=1

⋂
j≥n

Ej =
∞⋃
n=1

Dn ∈ A.

The collection {Dn} is monotone increasing, i.e., Dn ⊂ Dn+1 for all n.

We turn the union of the Dn’s into a disjoint union by

∞⋃
n=1

Dn = D1

⋃(
∞⋃
n=1

(Dn+1 −Dn)

)
.

Since for each n there are infinitely many k ≥ n such that µ(Ek) < ∞ and since Dn =
∩j≥nEn ⊂ Ek for all k ≥ n, we have that µ(Dn) <∞ for all n.

Thus by the countable additivity of µ and part (i) we have

µ(lim inf En) = µ

(
∞⋃
n=1

Dn

)
= µ(D1) +

∞∑
n=1

µ(Dn+1 −Dn)

= µ(D1) +
∞∑
n=1

(
µ(Dn+1)− µ(Dn)

)
= lim

n→∞
µ(Dn)

Since Dn = ∩k≥nEk ⊂ Ej for all j ≥ n, we have by monotonicity of µ that

µ(Dn) ≤ µ(Ej) for all j ≥ n.

Thus for each n ∈ N we have
µ(Dn) ≤ inf

j≥n
µ(En),

and we obtain

lim
n→∞

µ(Dn) = sup
n≥1

µ(Dn) ≤ sup
n≥1

inf
j≥n

µ(Ej) = lim inf
n→∞

µ(En).

Hence
µ(lim inf En) ≤ lim inf µ(En).

(vi) The proof of this is in the Appendix of this Lecture Note.

Homework Problem 5A. For a measure µ on a σ-algebra A, prove that if {En} in A
is monotone increasing and E = ∪En, then µ(En)→ µ(E) as n→∞.

Homework Problem 5B. For a measure µ on a σ-algebra A, prove that if {En} in
A is monotone decreasing, there exists k ∈ N such that µ(Ek) < ∞, and E = ∩En,
then µ(En) → µ(E) as n → ∞; show that this is false if there is no k ∈ N such that
µ(Ek) <∞.



Appendix Proof of part (vi) of Proposition 3.1. For a countable collection {En}, if we
set An = ∪j≥nEj ∈ A, n = 1, 2, 3, . . . , then the sequence of sets

Cn = A1 − An =
∞⋃
k=1

Ek −
⋃
j≥n

Ej ∈ A, n = 1, 2, 3, . . . ,

is monotone increasing.

Since An ⊂ A1 and by hypothesis µ(A1) < ∞, we have by part (i) that µ(Cn) =
µ(A1 − An) = µ(A1)− µ(An) <∞.

For

A =
∞⋂
n=1

An =
∞⋂
n=1

⋃
j≥n

Ej = lim supEn ∈ A,

we have

A1 − A = A1 −
∞⋂
n=1

An = A1 ∩

(
∞⋂
n=1

An

)c

= A1 ∩

(
∞⋃
n=1

Ac
n

)

=
∞⋃
n=1

(Ac
n ∩ A1) =

∞⋃
n=1

(A1 − An) =
∞⋃
n=1

Cn.

Since A ⊂ A1 and µ(A1) <∞, we have by part (i) that µ(A1)− µ(A) = µ(A1 − A).

By setting D1 = C1 and Dn+1 = Cn+1−Cn for n = 1, 2, 3, . . . we have ∪Cn = ∪Dn where
Di ∩Dj = ∅ for all i 6= j, so that by countable additivity, we have

µ(∪Cn) = µ(∪Dn) =
∑

µ(Dn) = µ(C1) +
∞∑
n=1

(
µ(Cn+1)− µ(Cn)

)
= lim

n→∞
µ(Cn),

where we have used Cn ⊂ Cn+1 (from increasing monotonicity of {Cn}) and part (i).

Thus we obtain

µ(A1)− µ(A) = lim
n→∞

µ(Cn) = lim
n→∞

(
µ(A1)− µ(An)

)
= µ(A1)− lim

n→∞
µ(An).

By hypothesis, µ(A1) <∞, so that µ(A) = limn→∞ µ(An).

Since An ⊃ Ej for all j ≥ n, we have µ(An) ≥ µ(Ej) for all j ≥ n by monotonicity.

Thus µ(An) ≥ supj≥n µ(Ej) for each n ∈ N, and hence

µ(lim supEn) = µ(A) = lim
n→∞

µ(An) ≥ inf
n≥1

sup
j≥n

µ(Ej) = lim sup
n→∞

µ(En),

the last equality being the definition of lim sup. �


