Math 541 Lecture #5
I1.3: Measures, Part I

3. Measures. The set of extended real numbers is denoted by
R* = {—oc0} UR U {o0},

where for any ¢ € R we define 00 £ ¢ = +00 and (+o0)c = (Foo)sign(c).
We further set oo + 0o = oo and —oco — 00 = —00, but leave oo — co undefined.
Let A be a g-algebra of sets in X.

A function p : A — R* is countably additive if for any finite or countable collection
of pairwise disjoint sets {F,} in A, we have

#(UB) =Y n(E).

A function p : A — R* is countably subadditive if for any finite or countable collection

{E,} of sets in A we have
u(Lﬂ%)S}ZMEw'

A measure on a g-algebra A is a countably additive function g : A — R* such that
u(A) >0 for all A€ A, and pu(A) < oo for some A € A.

A measure space is a triple { X, A, u} where A is a o-algebra in X and p: A — R* is
a measure.

Proposition 3.1. For a o-algebra A in a set X, suppose p : A — R* is a measure.

(i) For any A, B € A with A C B, we have

1(A) < u(B) (known as monotonicity), and,
p(B = A) = p(B) — p(A) if u(A) < oo.

(i) u(0) = 0.
(iii) For any A, B € A, we have if (AN B) < oo then

n(AU B) = p(A) + u(B) — p(AN B).

(iv) p is countably subadditive.
(v) For a countable collection {E,} in A we have

liminf pu(E,) > p(liminf £,).

(vi) For a countable collection {E,} in A, if u(UE,) < oo, then

lim sup p(E,) < p(limsup E,).



Proof. (i) Since B = AU(B — A) is a disjoint union of sets in A, the countable additivity
of u gives
1(B) = w(A) + p(B — A).

Since u(B — A) > 0, we obtain p(A) < u(B).

If p(A) < oo, we avoid the undefined co — oo to get u(B — A) = u(B) — u(A).
(i) There is a set £ € A for which u(E) < oo.

Applying part (i) with A = E and B = F gives

u(0) = p(E — E) = p(E) — u(E) = 0.

(iii) Since AUB = AU(B —(ANB)) is a disjoint union of sets in A, we have by countable
additivity of p that
W(AU B) = j(A) + u(B — (AN B).

Since AN B C B and u(A N B) < oo, we have by part (i) that u(B — (AN B)) =
w(B) — u(AnN B), and so

p(AU B) = u(A) + p(B) — p(AN B).

(iv) Let {E,} be a finite or countable collection of sets in .A.

If we set B; = F4, and inductively set
n—1
B,=E,—|]JE;, n>2,
j=1

then {B,} is a finite or countable collection of pairwise disjoint sets in .4 whose union is
the same as the union of {E,}.

Thus by countable additivity of x and part (i) we have

1 (UE) = (Use) = Xnte - 50 (8- Us) < Swee

(v) Let {E,} be a countable collection in A.
Recall the definition of the liminf applied to the sequence {u(E,)}:

liminf pu(E,) = sup inf p(E;) = lim inf p(E;).

n>1 i>n n—o0 j>n

If liminf p(E,) = oo, then trivially we have liminf p(F,) > p(liminf £,).
So suppose that liminf u(E,) < co.

Then for every n € N we have infinitely many k& > n such that u(Ejy) < co.
Set D,, = Nj>pE; € A,



Then
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n=1j>n
The collection {D,,} is monotone increasing, i.e., D,, C D,,.; for all n.

We turn the union of the D,,’s into a disjoint union by

U D,, = D, U (U(Dn+1 - Dn)) :

n=1

Since for each n there are infinitely many k& > n such that pu(Fjy) < oo and since D,, =

Nj>nEn C Ey for all k > n, we have that p(D,,) < oo for all n.
Thus by the countable additivity of u and part (i) we have

p(liminf E,,) (U D ) D) + ZM(DnH —D,)

w(Dn) +Z Dyy1) (Dn)) = lim pu(D5)

n—oo

Since D,, = Ng>n By, C E; for all j > n, we have by monotonicity of y that
w(Dy) < u(E;) for all j > n.
Thus for each n € N we have

u(D,) < inf p(E,).

j>n

and we obtain

lim p(D,,) = sup p(D,) < supinf u(E;) = liminf u(E,).

n—oo n>1 n>1 ji>n n—o0

Hence
p(liminf £,) < liminf u(E,).

(vi) The proof of this is in the Appendix of this Lecture Note.

Homework Problem 5A. For a measure p on a o-algebra A, prove that if {E,} in A

is monotone increasing and E = UE,,, then u(E,) — pu(F) as n — oo,

Homework Problem 5B. For a measure p on a og-algebra A, prove that if {F,} in
A is monotone decreasing, there exists k& € N such that u(Ey) < oo, and E = NE,,
then u(E,) — u(E) as n — oo; show that this is false if there is no & € N such that

u(Ey) < oo.



Appendix Proof of part (vi) of Proposition 3.1. For a countable collection {E,}, if we
set A, =Uj;>, B € A, n=1,2,3,..., then the sequence of sets

On:Al—An:GEk—UEjeA, n=123,...,

k=1 j>n

is monotone increasing.

Since A, C A; and by hypothesis p(A;) < oo, we have by part (i) that u(C,) =
(A — Ay) = p(Ar) — p(Ay,) < oo,

For - -
ﬂ ﬂU . =limsup E, € A,
n=1 n=1j>n

we have

Ay —A=A - ﬂA _Am(ﬂA) _A1m<7QA;)

D A° M Ay) G(Al—An): Dcn.
n=1 n=1 n=1

Since A C A; and p(A;) < oo, we have by part (i) that pu(A;) — pu(A) = p(4; — A).

By setting Dy = Cy and D,y 1 = C,,1—C, forn=1,2,3,... we have UC,, = UD,, where
D; N D; =0 for all i # j, so that by countable additivity, we have

n—oo

u(UC,) = w(UD,) = 3~ u(Dy) = u(Ch) + Z Co1) = w(Cn)) = lim pu(Cy),

where we have used C,, C C,,4+1 (from increasing monotonicity of {C,}) and part (i).

Thus we obtain

p(Ar) = p(A) = lim p(C,) = lim (u(Ar) — p(An)) = p(Ar) — lm pu(A,).

n—oo n—o0 n—oo

By hypothesis, u(A;) < oo, so that p(A) = lim, e p(An).
Since A,, D Ej for all j > n, we have p(A,,) > p(E;) for all j > n by monotonicity.
Thus p(An) > sup;s,, #(Ej) for each n € N, and hence

p(limsup E,) = u(A) = lim p(A,,) > inf sup p(E;) = limsup p(E,),

n—00 n2l j>p n—00

the last equality being the definition of lim sup. O



