Math 541 Lecture #7 II.4: Outer measures and sequential coverings, Part II II.5: The Hausdorff outer measure in \mathbb{R}^N , Part I

4.1: The Lebesgue outer measure in \mathbb{R}^N . Let \mathcal{Q} denote the collection of all $\frac{1}{2}$ -closed dyadic cubes in \mathbb{R}^N .

These cubes are of the form

$$Q_{p,q} = \left\{ x \in \mathbb{R}^N : \frac{q_i - 1}{2^p} < x_i \le \frac{q_i}{2^p} \right\}.$$

For such a cube Q, we denote by diam(Q) the length of a diameter of the cube:

diam(Q) =
$$\sup_{x,y\in Q} |x-y| = \sqrt{\left(\frac{1}{2^p}\right)^2 + \dots + \left(\frac{1}{2^p}\right)^2} = \frac{\sqrt{N}}{2^p}.$$

For the function λ defined on \mathbb{Q} we take

$$\lambda(Q) = \left(\frac{\operatorname{diam}(Q)}{\sqrt{N}}\right)^N = \left(\frac{\sqrt{N}}{2^p\sqrt{N}}\right)^N = \left(\frac{1}{2^p}\right)^N,$$

which is the volume of Q.

Since every subset of \mathbb{R}^N can be contained in some open subset, and since \mathcal{Q} is a sequential covering of \mathbb{R}^N , we can define for every $E \in \mathcal{P}(\mathbb{R}^N)$,

$$\mu_e(E) = \inf\left\{\sum\left(\frac{\operatorname{diam}(Q_n)}{\sqrt{N}}\right)^N : E \subset \bigcup Q_n, \{Q_n\} \subset \mathcal{Q}\right\},\$$

which is the **Lebesgue outer measure** of \mathbb{R}^N .

4.2: The Lebesgue-Stieltjes outer measure in \mathbb{R} . Let $f : \mathbb{R} \to \mathbb{R}$ be a monotone increasing and right-continuous, i.e., $x \leq y$ implies $f(x) \leq f(y)$, and $\lim_{x \to a^+} f(x) = f(a)$ for all $a \in \mathbb{R}$ (where the right-sided limit exists and is equal to $\inf_{x>a} f(x)$ by the monotone increasing of f).

Let \mathcal{Q} be the collection of open subintervals of \mathbb{R} , which is a sequential covering of \mathbb{R} (see Proposition 1 in II.1).

Define $\lambda_f : \mathcal{Q} \to \mathbb{R}$ by

$$\lambda_f((a,b)) = f(b) - f(a).$$

For $E \in \mathcal{P}(\mathbb{R})$, the outer measure generated by \mathcal{Q} and λ is

$$\mu_{f,e}(E) = \inf\left\{\sum \lambda_f(Q_n) : E \subset \bigcup Q_n, \{Q_n\} \subset \mathcal{Q}\right\},\$$

and is called the Lebesgue-Stieltjes outer measure generated by f.

Proposition. $\mu_{f,e}((a,b]) = f(b) - f(a)$.

Proof. Recall for a nonempty bounded below set of real numbers S and a lower bound α of S, that $\alpha = \inf S$ if and only if for all $\epsilon > 0$ there exists $s \in S$ such that $s < \alpha + \epsilon$. Thus, if we can show that f(b) - f(a) is a lower bound, and for every $\epsilon > 0$ we can exhibit the existence of a sequential covering $\{Q_n\}$ of (a, b] such that

$$\sum \lambda_f(Q_n) < f(b) - f(a) + \epsilon$$

then we have implied that $\mu_{f,e}((a,b]) = f(b) - f(a)$.

To show that f(b) - f(a) is a lower bound, suppose that it is not.

Then there is $\{Q_n\} \subset \mathcal{Q}$ such that $(a, b] \subset \cup Q_n$ and

$$\sum \lambda_f(Q_n) < f(b) - f(a)$$

Since $(a, b] \subset \cup Q_n$, there is an open interval (c, d) such that $(a, b] \subset (c, d) \subset \cup Q_n$. Since $(c, d) \subset \cup Q_n = \cup (a_n, b_n)$, the monotonicity of f and our assumption imply

$$f(d) - f(c) = \lambda_f((c,d)) \le \sum \lambda_f((a_n, b_n)) = \sum \lambda_f(Q_n) < f(b) - f(a)$$

But $c \le a < b < d$ which implies that $f(b) - f(a) \le f(d) - f(c)$, a contradiction. For $\epsilon > 0$ there is by the right continuity of f at b the existence of $\delta > 0$ such that for all $x \in (b, b + \delta)$ we have $f(x) - f(b) < \epsilon$.

Select $b_{\epsilon} \in (b, b + \delta)$.

The sequential covering of (a, b] consisting of just the one open interval (a, b_{ϵ}) satisfies

$$\lambda_f((a, b_{\epsilon})) = f(b_{\epsilon}) - f(a) < f(b) - f(a) + \epsilon.$$

Therefore we have that $\mu_{f,e}((a,b]) = f(b) - f(a)$. Does $\mu_{f,e}((a,b)) = \lambda_f((a,b))$ for all $(a,b) \in \mathcal{Q}$?

Proposition. If f is discontinuous at b but continuous on $[a - \eta, b)$ for a small $\eta > 0$, then $\mu_{f,e}((a,b)) < f(b) - f(a)$.

Proof. Suppose f is discontinuous at b, i.e., there is a jump discontinuity of f at b, while f is continuous on $[a - \eta, b)$ for some small $\eta > 0$.

Set

$$\epsilon = \lim_{x \to b^+} f(x) - \lim_{x \to b^-} f(x) = f(b) - \lim_{x \to b^-} f(x) > 0.$$

We will choose a sequential covering $\{Q_n\}$ of (a, b) as follows.

We want the endpoints of the open intervals $Q_n = (a_n, b_n)$ to satisfy

- 1. $\{a_n\}$ is strictly increasing with $a_1 = a$,
- 2. $\{b_n\}$ is strictly increasing with $b_n < b$ for all n,
- 3. $a_{n+1} < b_n$ for all n.

Since $b_n \in [a - \eta, b)$, we can choose a_{n+1} close enough to b_n by the continuity of f at b_n so that

$$f(b_n) - f(a_{n+1}) \le \frac{\epsilon}{2^{n+1}}$$

Then we have for each positive integer m that

$$\sum_{n=1}^{m} (f(b_n) - f(a_n)) = -f(a_1) + (f(b_1) - f(a_2)) + (f(b_2) - f(a_3)) + \cdots + (f(b_{m-1}) - f(a_m)) + f(b_m)$$
$$= f(b_m) - f(a_1) + \sum_{n=1}^{m-1} \frac{\epsilon}{2^{n+1}} \le \lim_{x \to b^-} f(x) - f(a) + \frac{\epsilon}{2},$$

where we have used the monotonicity of f.

This upper bound on the partial sums implies that

$$\sum_{n=1}^{\infty} \lambda_f(Q_n) < \lim_{x \to b^-} f(x) - f(a) + \epsilon$$

= $\lim_{x \to b^-} f(x) - f(a) + f(b) - \lim_{x \to b^-} f(x)$
= $f(b) - f(a)$.

Therefore $\mu_{f,e}((a,b)) < f(b) - f(a) = \lambda_f((a,b)).$

Homework Problem 7A. For $f(x) = e^x$, find $\mu_{f,e}((a, b))$.

5. Hausdorff Outer Measure in \mathbb{R}^N . For $\epsilon > 0$, let \mathcal{E}_{ϵ} be the sequential covering of \mathbb{R}^N consisting of all subsets E of \mathbb{R}^N for which diam $(E) < \epsilon$.

For fixed $\alpha > 0$ and $E \in \mathcal{E}_{\epsilon}$ define $\lambda(E) = (\operatorname{diam}(E))^{\alpha}$; and set $\lambda(\emptyset) = 0$.

The nonnegative function λ on \mathcal{E}_{ϵ} generates an outer measure

$$\mathcal{H}_{\alpha,\epsilon}(E) = \inf\left\{\sum \left(\operatorname{diam}(E_n)\right)^{\alpha} : E \subset \bigcup E_n, \{E_n\} \in \mathcal{E}_{\epsilon}\right\}.$$

For this outer measure, we have $\mathcal{H}_{\alpha,\epsilon}(E) < \lambda(E)$ when $\alpha > 2$ and E is a square of unit edge in \mathbb{R}^2 because

$$\lambda(E) = \left(\sqrt{1+1}\right)^{\alpha} = \left(\sqrt{2}\right)^{\alpha},$$

while for all $\alpha > 2$ there holds

$$\mathcal{H}_{\alpha,\epsilon}(E) = 0.$$

Homework problem 7B. Prove that $\mathcal{H}_{\alpha,\epsilon}(E) = 0$ for all $\alpha > 2$.

If $\epsilon' < \epsilon$ then $\mathcal{H}_{\alpha,\epsilon} \leq \mathcal{H}_{\alpha,\epsilon'}$ because every sequential covering by sets in $\mathcal{E}_{\epsilon'}$ is a sequential covering by sets in \mathcal{E}_{ϵ} , but not every sequential covering by sets in \mathcal{E}_{ϵ} is a sequential covering by sets in $\mathcal{E}_{\epsilon'}$. This implies that

$$\mathcal{H}_{\alpha}(E) = \sup_{\epsilon > 0} \mathcal{H}_{\alpha,\epsilon}(E) = \lim_{\epsilon \to 0} \mathcal{H}_{\alpha,\epsilon}(E)$$

exists in \mathbb{R}^* and defines a nonnegative function \mathcal{H}_{α} on $\mathcal{P}(\mathbb{R}^N)$.