Math 541 Lecture #8
I1.5: The Hausdorff outer measure in RY, Part II

Recall that
Hoo(E) = inf {Z (diam(E,))" : E C | J En, {Ea} € 56}

is an outer measure, and that

Ho(E) =sup Ha(E) = li_r% Hao(E)

e>0

is a nonnegative function on P(RY)

Proposition 5.1. The function H, is an outer measure on RY. Moreover, for a < f3,
there holds

(i) if Ho(E) < 00, then Hp(E) =0, and
(ii) if Hg(E) > 0, then H,(E) = oc.
Lastly, for every E € P(RY) there holds

Hn(E)

RNHN(E)
N

where ky is the volume of the unit ball in RY and g, is the Lebesgue outer measure in
R¥ . In particular when N = 1, the Lebesgue outer measure coincides with the Hausdorff
outer measure H;. (See Appendix in this lecture note for definition of ky.)

Proof. That H, is an outer measures follows from mimicking the proof that pu. is an
outer measure (Proposition 4.1).

(i) Let {E,} C & be a sequential covering of E € P(RY).
Since 3 > a we have for 0 < a < € that a®=® < €%, so that a® < €*~*a®; thus

Hp.( Z diam(FE P < pa Z (diam(E,))".
n=1 n=1

This implies that
Hp(E) < #*Ho (E).

If Ho(E) < o0, then Ho(E) = sup,.g Ha(E) implies that €#~*H, (FE) — 0 as € — 0,
so that Hg(E) = 0.

(ii) This is the contrapositive of (i).

For the inequalities relating Hy and p., we assume that both Hy(E) and u.(E) are
finite.

For a fixed € > 0, there is a sequential covering {Q,,} of E by dyadic cubes for which

pe(E) > Z (dlam—\/%gn)) —€= ﬁ Z (diam(Qn))N — €.

n=1 n=1



Without loss of generality, we assume that diam(Q,) < € for all N, by possibly sub-
dividing any dyadic cube into a finite collection of dyadic cubes with sufficiently small
diameters, so that {Q,} C &..

Then
1 - . N HN,G(E)
:ue(E) > W Z (dlam(Qn)) —€2> W -
n=1
We obtain by taking the limit as € — 0 that
Hy(E)

For a fixed € > 0, there is a sequential covering {E,,} of E by sets in & for which

He Z dlam — %
n=1

Since F, is contained in a closed ball B, of diam(FE,), there are finitely many dyadic
cubes {Qy;}, 7 =1,..., j, which cover E,,.

We choose such a finite covering of F,, so that
, v 2V oV I (diam(Q, )\ e
(diam(E,))" = —Vol(B,) > 2; (T ~ et
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[The equality is proven in the Appendix of this lecture note.]

Thus we obtain
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We obtain by taking the limit as € — 0 that u.(E) < k., Hy(E)/2V. O
We call ‘H,, the Hausdorff outer measure.

Recall the definition of the distance dist(E, F') between two nonempty subsets F and F
of RY:

dist(E, F) = inf{d(z,y) : x € E,y € F}.
Proposition 5.2. If £, F' € P(RY) satisfy dist(E, F') > 0, then for all & > 0 there holds
Ho(EUF) =Ho(E) + HolF).

Proof. Since Ho(EUF) < Ho(E) 4+ Ho(F) by subadditivity, it remains to show that the
opposite inequality holds when dist(E, F) > 0.



We assume that H,(E U F') < oo, for otherwise equality holds trivially.
For ¢ = dist(F, F'), we choose € < §/2.
Then there is a sequential covering {G,,} of E U F' by sets in & for which

Haoo(EUF) Z dlam —
n=1

Since dist(E, F') = § > 2¢, each G,, containing some point of E satisfies G, N F = ().
Similarly, each G,, containing some point of F satisfies G,, N E = ().

These implies that the sequential covering {G,} splits into a sequential covering {Ej}
of F and a sequential covering {F;} of F. [In this splitting, it may happen that all but
finitely many of the Ej or the F} (but not both) are the empty set.]

Thus

o0

HoEUF) Z dlam (Ey) a+z (diam(Fl))a —€

Taking the limit as ¢ — 0 gives the desired inequality. U



Appendix. The volume of a ball B in RY with diameter d is

N/2 N
(2m)™"d if V is even,
B 2N(2 ... N)
Vol(B) = 2<27T)(N—1)/2dN
if N is odd.
2N(1 .3... N)

Thus the value of ky, the volume of the unit ball in RY whose diameter is 2, is

2 N/2
2( I) if N is even,
- 4
2(27)(N=1)/2
(1 72 ~— if Nis odd.

Thus we obtain the formula for the volume of a ball B in RY with diameter d:

/‘f,NdN
2N

Vol(B) =



