Math 541 Lecture #9 II.6: Constructing measures from outer measures

6. The Carathéodory Procedure. We shall now describe the Carathéodory procedure of constructing a complete measure from an outer measure.

Let μ_e be an outer measure on a set X.

For any $A, E \in \mathcal{P}(X)$ we have the set identity

$$A = (A \cap E) \cup (A - E)$$

for a union of disjoint sets, which by countable subadditivity of μ_e gives

$$\mu_e(A) \le \mu_e(A \cap E) + \mu_e(A - E).$$

We say an element $E \in \mathcal{P}(X)$ is μ_e -measurable if for all $A \in \mathcal{P}(X)$ there holds

$$\mu_e(A) = \mu_e(A \cap E) + \mu_e(A - E).$$

We denote by \mathcal{A} the collection of all μ_e -measurable elements of $\mathcal{P}(X)$.

Proposition 6.1. For an outer measure μ_e , the collection \mathcal{A} has the following properties.

- (i) $\emptyset \in \mathcal{A}$.
- (ii) If $E \in \mathcal{A}$, then $E^c \in \mathcal{A}$.
- (iii) If $E \in \mathcal{P}(X)$ satisfies $\mu_e(E) = 0$, then $E \in \mathcal{A}$.
- (iv) If $E_1, E_2 \in \mathcal{A}$, then $E_1 \cup E_2 \in \mathcal{A}$.
- (v) If $E_1, E_2 \in \mathcal{A}$, then $E_1 E_2 \in \mathcal{A}$.
- (vi) If $E_1, E_2 \in \mathcal{A}$, then $E_1 \cap E_2 \in \mathcal{A}$.
- (vii) If $\{E_n\}$ is a countable collection of pairwise disjoint sets in \mathcal{A} , then for all $A \in \mathcal{P}(X)$ there holds

$$\lim_{m \to \infty} \mu_e \left(A \cap \left(\bigcup_{n=1}^m E_n \right) \right) = \mu_e \left(A \cap \left(\bigcup_{n=1}^\infty E_n \right) \right) = \sum_{n=1}^\infty \mu_e (A \cap E_n)$$

(viii) A countable union of sets in \mathcal{A} is in \mathcal{A} .

Proof. (i) Since $\mu_e(A \cap \emptyset) + \mu_e(A - \emptyset) = \mu_e(\emptyset) + \mu_e(A) = \mu_e(A)$ for all $A \in \mathcal{P}(X)$, we have that $\emptyset \in \mathcal{A}$.

(ii) For $E \in \mathcal{A}$ we have $\mu_e(A) = \mu_e(A \cap E) + \mu_e(A - E) = \mu_e(A \cap E) + \mu_e(A \cap E^c)$ for all $A \in \mathcal{P}(X)$.

Since $A \cap E = A - E^c$ we obtain $\mu_e(A) = \mu_e(A - E^c) + \mu_e(A \cap E^c)$ for all $A \in \mathcal{P}(X)$, which implies that $E^c \in \mathcal{A}$.

(iii) If $\mu_e(E) = 0$, then for all $A \in \mathcal{P}(X)$ we have $0 \le \mu_e(A \cap E) \le \mu_e(E)$ and $\mu(A - E) \le \mu_e(A)$ by monotonicity, so that for all $A \in \mathcal{P}(X)$ there holds

$$\mu_e(A \cap E) + \mu_e(A - E) \le \mu_e(E) + \mu_e(A) = 0 + \mu_e(A) = \mu_e(A).$$

Thus $\mu_e(A) = \mu_e(A \cap E) + \mu_e(A - E)$ and so $E \in \mathcal{A}$. (iv) For $E_1, E_2 \in \mathcal{A}$ we have for any $A \in \mathcal{P}(X)$ that

$$\mu_e(A) \ge \mu_e(A \cap E_1) + \mu_e(A - E_1),$$

$$\mu_e(A - E_1) \ge \mu_e((A - E_1) \cap E_2) + \mu_e((A - E_1) - E_2),$$

where the second inequality holds because $A - E_1 \in \mathcal{P}(X)$. Because of the common summand $\mu_e(A - E_1)$ in these inequalities we get

 $\mu_e(A) \ge \mu_e(A \cap E_1) + \mu_e((A - E_1) \cap E_2) + \mu_e((A - E_1) - E_2).$

By the subadditivity of μ_e we obtain

$$\mu_e(A) \ge \mu_e((A \cap E_1) \cup ((A - E_1) \cap E_2)) + \mu_e((A - E_1) - E_2).$$

By the set identities $(A \cap E_1) \cup ((A - E_1) \cap E_2) = A \cap (E_1 \cup E_2)$ and $(A - E_1) - E_2 = A - (E_1 \cup E_2)$, we have

$$\mu_e(A) \ge \mu_e(A \cap (E_1 \cup E_2)) + \mu_e(A - (E_1 \cup E_2)).$$

Thus $E_1 \cup E_2 \in \mathcal{A}$.

(v) Using the set identity $E_1 - E_2 = E_1 \cap E_2^c = (E_1^c \cup E_2)^c$ and (ii) and (iv), we have that $E_1 - E_2 \in \mathcal{A}$ whenever $E_1, E_2 \in \mathcal{A}$.

(vi) Using the set identity $E_1 \cap E_2 = (E_1^c \cup E_2^c)^c$ and (ii) and (iv), we have that $E_1 \cap E_2 \in \mathcal{A}$ whenever $E_1, E_2 \in \mathcal{A}$.

(vii) For a countable collection $\{E_n\}$ of pairwise disjoint sets in \mathcal{A} , set $B_k = \bigcup_{j=1}^k E_j$. By pairwise disjointness of $\{E_n\}$ we have that $B_{k+1} - B_k = E_{k+1}$ for all k.

Let
$$A \in \mathcal{P}(X)$$

For k = 1, we have $\mu_e(A \cap B_1) = \sum_{j=1}^{1} \mu_e(A \cap E_j)$.

Suppose that for $k \ge 1$ we have $\mu_e(A \cap B_k) = \sum_{j=1}^k \mu_e(A \cap E_j)$.

By (iv) we have $B_k \in \mathcal{A}$, so that

$$\mu_e(A \cap B_{k+1}) = \mu_e((A \cap B_{k+1}) \cap B_k) + \mu_e((A \cap B_{k+1}) - B_k)$$

= $\mu_e(A \cap B_k) + \mu_e(A \cap E_{k+1})$

By induction there holds $\mu_e(A \cap B_k) = \sum_{j=1}^k \mu_e(A \cap E_j)$ for all $k \in \mathbb{N}$.

By subadditivity and monotonicity of μ_e , and the induction above, we have for all $m \in \mathbb{N}$ that

$$\sum_{n=1}^{\infty} \mu_e(A \cap E_n) \ge \mu_e\left(\bigcup_{n=1}^{\infty} (A \cap E_n)\right) = \mu_e\left(A \cap \left(\bigcup_{n=1}^{\infty} E_n\right)\right)$$
$$\ge \mu_e\left(A \cap \left(\bigcup_{n=1}^m E_n\right)\right) = \sum_{n=1}^m \mu_e(A \cap E_n).$$

Letting $m \to \infty$ forces the inequalities to be equalities, giving the result.

(viii) We may assume that $\{E_n\}$ are pairwise disjoint by replacing $\{E_n\}$ by $\{D_n\}$ where $D_1 = E_1$ and $D_n = E_{n+1} - \bigcup_{j=1}^n E_n$ if needed since each $D_n \in \mathcal{A}$ and $\bigcup D_n = \bigcup E_n$. Each finite union $\bigcup_{n=1}^m E_n$ belongs to \mathcal{A} so that for all $A \in \mathcal{P}(X)$ there holds

$$\mu_e(A) = \mu_e\left(A \cap \left(\bigcup_{n=1}^m E_n\right)\right) + \mu_e\left(A - \bigcup_{n=1}^m E_n\right).$$

Since $A - \bigcup_{n=1}^{m} E_n \supset A - \bigcup_{n=1}^{\infty} E_n$, we have by monotonicity that

$$\mu_e\left(A - \bigcup_{n=1}^m E_n\right) \ge \mu_e\left(A - \bigcup_{n=1}^\infty E_n\right).$$

By (vii) we have that

$$\lim_{m \to \infty} \mu_e \left(A \cap \left(\bigcup_{n=1}^m E_n \right) \right) = \mu_e \left(A \cap \left(\bigcup_{n=1}^\infty E_n \right) \right).$$

Thus

$$\mu_e(A) \ge \mu_e\left(A \cap \left(\bigcup_{n=1}^{\infty} E_n\right)\right) + \mu_e\left(A - \bigcup_{n=1}^{\infty} E_n\right).$$

This implies that $\cup E_n$ belongs to \mathcal{A} .

Proposition 6.2 (Carathéodory). The restriction of μ_e to \mathcal{A} is a complete measure. Proof. The nonempty set \mathcal{A} is a algebra by parts (i), (ii), and (iv) of Proposition 6.1. The algebra \mathcal{A} is a σ -algebra by part (viii) of Proposition 6.1.

The outer measure μ_e restricted to \mathcal{A} is a measure, where countable additivity follows from part (vii) of Proposition 6.1 with $A = \bigcup E_n$ for $\{E_n\}$ in \mathcal{A} being pairwise disjoint:

$$\mu_e \left(\bigcup_{n=1}^{\infty} E_n \right) = \mu_e \left(\left(\bigcup_{m=1}^{\infty} E_m \right) \cap \left(\bigcup_{n=1}^{\infty} E_n \right) \right)$$
$$= \sum_{n=1}^{\infty} \mu_e \left(\left(\bigcup_{m=1}^{\infty} E_m \right) \cap E_n \right)$$
$$= \sum_{n=1}^{\infty} \mu_e(E_n).$$

The completeness of μ_e restricted to \mathcal{A} is by part (iii) of Proposition 6.1.