
Math 541 Lecture #9
II.6: Constructing measures from outer measures

6. The Carathéodory Procedure. We shall now describe the Carathéodory procedure
of constructing a complete measure from an outer measure.

Let µe be an outer measure on a set X.

For any A,E ∈ P(X) we have the set identity

A = (A ∩ E) ∪ (A− E)

for a union of disjoint sets, which by countable subadditivity of µe gives

µe(A) ≤ µe(A ∩ E) + µe(A− E).

We say an element E ∈ P(X) is µe-measurable if for all A ∈ P(X) there holds

µe(A) = µe(A ∩ E) + µe(A− E).

We denote by A the collection of all µe-measurable elements of P(X).

Proposition 6.1. For an outer measure µe, the collection A has the following properties.

(i) ∅ ∈ A.

(ii) If E ∈ A, then Ec ∈ A.

(iii) If E ∈ P(X) satisfies µe(E) = 0, then E ∈ A.

(iv) If E1, E2 ∈ A, then E1 ∪ E2 ∈ A.

(v) If E1, E2 ∈ A, then E1 − E2 ∈ A.

(vi) If E1, E2 ∈ A, then E1 ∩ E2 ∈ A.

(vii) If {En} is a countable collection of pairwise disjoint sets in A, then for all A ∈ P(X)
there holds

lim
m→∞

µe

(
A ∩

( m⋃
n=1

En

))
= µe

(
A ∩

( ∞⋃
n=1

En

))
=

∞∑
n=1

µe

(
A ∩ En

)
.

(viii) A countable union of sets in A is in A.

Proof. (i) Since µe(A ∩ ∅) + µe(A − ∅) = µe(∅) + µe(A) = µe(A) for all A ∈ P(X), we
have that ∅ ∈ A.

(ii) For E ∈ A we have µe(A) = µe(A ∩ E) + µe(A − E) = µe(A ∩ E) + µe(A ∩ Ec) for
all A ∈ P(X).

Since A ∩ E = A − Ec we obtain µe(A) = µe(A − Ec) + µe(A ∩ Ec) for all A ∈ P(X),
which implies that Ec ∈ A.

(iii) If µe(E) = 0, then for all A ∈ P(X) we have 0 ≤ µe(A∩E) ≤ µe(E) and µ(A−E) ≤
µe(A) by monotonicity, so that for all A ∈ P(X) there holds

µe(A ∩ E) + µe(A− E) ≤ µe(E) + µe(A) = 0 + µe(A) = µe(A).



Thus µe(A) = µe(A ∩ E) + µe(A− E) and so E ∈ A.

(iv) For E1, E2 ∈ A we have for any A ∈ P(X) that

µe(A) ≥ µe(A ∩ E1) + µe(A− E1),

µe(A− E1) ≥ µe((A− E1) ∩ E2) + µe((A− E1)− E2),

where the second inequality holds because A− E1 ∈ P(X).

Because of the common summand µe(A− E1) in these inequalities we get

µe(A) ≥ µe(A ∩ E1) + µe((A− E1) ∩ E2) + µe((A− E1)− E2).

By the subadditivity of µe we obtain

µe(A) ≥ µe

(
(A ∩ E1) ∪

(
(A− E1) ∩ E2)

)
+ µe((A− E1)− E2).

By the set identities (A ∩ E1) ∪ ((A− E1) ∩ E2) = A ∩ (E1 ∪ E2) and (A− E1)− E2 =
A− (E1 ∪ E2), we have

µe(A) ≥ µe(A ∩ (E1 ∪ E2)) + µe(A− (E1 ∪ E2).

Thus E1 ∪ E2 ∈ A.

(v) Using the set identity E1−E2 = E1∩Ec
2 = (Ec

1∪E2)
c and (ii) and (iv), we have that

E1 − E2 ∈ A whenever E1, E2 ∈ A.

(vi) Using the set identity E1∩E2 = (Ec
1∪Ec

2)
c and (ii) and (iv), we have that E1∩E2 ∈ A

whenever E1, E2 ∈ A.

(vii) For a countable collection {En} of pairwise disjoint sets in A, set Bk = ∪kj=1Ej.

By pairwise disjointness of {En} we have that Bk+1 −Bk = Ek+1 for all k.

Let A ∈ P(X).

For k = 1, we have µe(A ∩B1) =
∑1

j=1 µe(A ∩ Ej).

Suppose that for k ≥ 1 we have µe(A ∩Bk) =
∑k

j=1 µe(A ∩ Ej).

By (iv) we have Bk ∈ A, so that

µe(A ∩Bk+1) = µe

(
(A ∩Bk+1) ∩Bk

)
+ µe

(
(A ∩Bk+1)−Bk)

= µe

(
A ∩Bk) + µe(A ∩ Ek+1)

By induction there holds µe(A ∩Bk) =
∑k

j=1 µe(A ∩ Ej) for all k ∈ N.

By subadditivity and monotonicity of µe, and the induction above, we have for all m ∈ N
that

∞∑
n=1

µe(A ∩ En) ≥ µe

(
∞⋃
n=1

(A ∩ En)

)
= µe

(
A ∩

( ∞⋃
n=1

En

))

≥ µe

(
A ∩

( m⋃
n=1

En

))
=

m∑
n=1

µe(A ∩ En).



Letting m→∞ forces the inequalities to be equalities, giving the result.

(viii) We may assume that {En} are pairwise disjoint by replacing {En} by {Dn} where
D1 = E1 and Dn = En+1 − ∪n

j=1En if needed since each Dn ∈ A and ∪Dn = ∪En.

Each finite union ∪mn=1En belongs to A so that for all A ∈ P(X) there holds

µe(A) = µe

(
A ∩

( m⋃
n=1

En

))
+ µe

(
A−

m⋃
n=1

En

)
.

Since A− ∪m
n=1En ⊃ A− ∪∞

n=1En, we have by monotonicity that

µe

(
A−

m⋃
n=1

En

)
≥ µe

(
A−

∞⋃
n=1

En

)
.

By (vii) we have that

lim
m→∞

µe

(
A ∩

( m⋃
n=1

En

))
= µe

(
A ∩

( ∞⋃
n=1

En

))
.

Thus

µe(A) ≥ µe

(
A ∩

( ∞⋃
n=1

En

))
+ µe

(
A−

∞⋃
n=1

En

)
.

This implies that ∪En belongs to A. �

Proposition 6.2 (Carathéodory). The restriction of µe to A is a complete measure.

Proof. The nonempty set A is a algebra by parts (i), (ii), and (iv) of Proposition 6.1.

The algebra A is a σ-algebra by part (viii) of Proposition 6.1.

The outer measure µe restricted to A is a measure, where countable additivity follows
from part (vii) of Proposition 6.1 with A = ∪En for {En} in A being pairwise disjoint:

µe

(
∞⋃
n=1

En

)
= µe

(( ∞⋃
m=1

Em

)
∩
( ∞⋃

n=1

En

))

=
∞∑
n=1

µe

(( ∞⋃
m=1

Em

)
∩ En

)

=
∞∑
n=1

µe(En).

The completeness of µe restricted to A is by part (iii) of Proposition 6.1. �


