Math 541 Lecture #10 II.7: The Lebesgue-Stieltjes measure on \mathbb{R} II.8: The Hausdorff measure on \mathbb{R}^N

7. The Lebesgue-Steltjes measure on \mathbb{R} . Recall that the Lebesgue-Stieltjes outer measure $\mu_{f,e}$ is generated by a right-continuous monotone increasing function $f : \mathbb{R} \to \mathbb{R}$ and the sequential covering \mathcal{Q} of \mathbb{R} consisting of open intervals:

$$\mu_{f,e}(E) = \inf\left\{\sum_{n=1}^{\infty} \lambda_f(Q_n) : \{Q_n\} \in \mathcal{Q}, E \subset \bigcup_{n=1}^{\infty} Q_n\right\}$$

where $\lambda_f((a,b)) = f(b) - f(a)$.

By the Carathéodory procedure, the outer measure $\mu_{f,e}$ determines a σ -algebra \mathcal{A}_f and a complete measure μ_f on \mathcal{A}_f , known as the Lebesgue-Stieltjes measure on \mathbb{R} .

Recall that the Borel σ -algebra $\mathcal{B}_{\mathbb{R}}$ is the smallest σ -algebra containing all of the open sets of \mathbb{R} .

We will show that \mathcal{A}_f contains $\mathcal{B}_{\mathbb{R}}$.

Lemma 7.2. For any open interval I and any interval of the type $(\alpha, \beta]$ there holds

$$\lambda_f(I) \ge \mu_{f,e} (I \cap (\alpha, \beta]) + \mu_{f,e} (I - (\alpha, \beta]).$$

Proof. For I = (a, b) we consider the case $a \le \alpha < \beta < b$, i.e., $(\alpha, \beta] \subset (a, b)$. We have $I \cap (\alpha, \beta]) = (\alpha, \beta]$, and $I - (\alpha, \beta] = (a, \alpha] \cup (\beta, b)$.

Let ϵ and η be positive real numbers.

Then

$$(\beta, b) \subset \lim_{\epsilon \to 0} (\beta + \epsilon, b),$$

$$(\alpha, \beta] \subset \lim_{\epsilon \to 0} \lim_{\eta \to 0} (\alpha + \eta, \beta + \epsilon),$$

$$(a, \alpha] \subset \lim_{\eta \to 0} (a, \alpha + \eta],$$

By the right-continuity of f and the definition and properties of the Lebesgue-Stieltjes outer measure we have

$$\lambda_{f}(I) = f(b) - f(a)$$

$$= \lim_{\epsilon \to 0} \left(f(b) - f(\beta + \epsilon) \right) + \lim_{\epsilon \to 0} \lim_{\eta \to 0} \left(f(\beta + \epsilon) - f(\alpha + \eta) \right)$$

$$+ \lim_{\eta \to 0} \left(f(\alpha + \eta) - f(a) \right)$$

$$\geq \mu_{f,e}((\beta, b)) + \mu_{f,e}((\alpha, \beta]) + \mu_{f,e}((a, \alpha])$$

$$\geq \mu_{f,e}(I \cap (\alpha, \beta]) + \mu_{f,e}(I - (\alpha, \beta]).$$

The other two cases, $\alpha \leq a < \beta < b$ and $a \leq \alpha < b < \beta$, are handled similarly.

Proposition 7.1. The σ -algebra \mathcal{A}_f contains $\mathcal{B}_{\mathbb{R}}$.

Proof. It suffices to show that intervals of the form $(\alpha, \beta]$ belong to \mathcal{A}_f , since any open interval is a countable union of "half-open" intervals:

$$(a,b) = \bigcup_{n=1}^{\infty} (a,b-1/n]$$

An interval of the form $(\alpha, \beta]$ belongs to \mathcal{A}_f when for all $A \in \mathcal{P}(\mathbb{R})$ it satisfies

$$\mu_{f,e}(A) \ge \mu_{f,e}(A \cap (\alpha,\beta]) + \mu_{f,e}(A - (\alpha,\beta])$$

WLOG we assume that $\mu_{f,e}(A) < \infty$ (for the inequality is true when it is infinite). For a fixed $\epsilon > 0$ choose a sequential covering of A by open intervals $\{I_n\}$ so that

$$\mu_{f,e}(A) + \epsilon \ge \sum_{n=1}^{\infty} \lambda_f(I_n)$$

By Lemma 7.2 we know for each $n \in \mathbb{N}$ that

$$\lambda_f(I_n) \ge \mu_{f,e}(I_n \cap (\alpha, \beta]) + \mu_{f,e}(I_n - (\alpha, \beta])$$

Hence

$$\mu_{f,e}(A) + \epsilon \ge \sum_{n=1}^{\infty} \mu_{f,e} \left(I_n \cap (\alpha, \beta] \right) + \sum_{n=1}^{\infty} \mu_{f,e} \left(I_n - (\alpha, \beta] \right)$$
$$\ge \mu_{f,e} \left(\bigcup_{n=1}^{\infty} \left(I_n \cap (\alpha, \beta] \right) \right) + \mu_{f,e} \left(\bigcup_{n=1}^{\infty} \left(I_n - (\alpha, \beta] \right) \right)$$
$$\ge \mu_{f,e} \left(A \cap (\alpha, \beta] \right) + \mu_{f,e} \left(A - (\alpha, \beta] \right),$$

where countable subadditivity and monotonicity of $\mu_{f,e}$ have been used.

Since $\epsilon > 0$ is arbitrary, we obtain that $(\alpha, \beta] \in \mathcal{A}_f$. 7 1: Borel Measures A measure μ in \mathbb{R}^N is a Borel measure if the σ -al

7.1: Borel Measures. A measure μ in \mathbb{R}^N is a **Borel measure** if the σ -algebra of the domain of μ contains the Borel sets $\mathcal{B}_{\mathbb{R}^N}$ in \mathbb{R}^N .

Proposition 7.1 states that the Lebesgue-Stieltjes measure μ_f is a Borel measure in \mathbb{R} .

8: The Hausdorff Measure on \mathbb{R}^N . Recall for each fixed $\alpha > 0$, that the Hausdorff outer measure \mathcal{H}_{α} on \mathbb{R}^n generates a σ -algebra \mathcal{A}_{α} and a complete measure μ_{α} in \mathbb{R}^n .

Theorem. For all $\alpha > 0$, the Hausdorff measure μ_{α} is a Borel measure.

Proof. It suffices to show that every closed set $E \subset \mathbb{R}^N$ belongs to \mathcal{A}_{α} , because each open set is a countable union of closed sets (an F_{σ} set).

So for each closed E we will show for all $A \in \mathcal{P}(\mathbb{R}^N)$ that

$$\mathcal{H}_{\alpha}(A) \geq \mathcal{H}_{\alpha}(A \cap E) + \mathcal{H}_{\alpha}(A - E).$$

We assume that $\mathcal{H}_{\alpha}(A) < \infty$, and for each $n \in \mathbb{N}$ set

$$E_n = \left\{ x \in \mathbb{R}^N : \operatorname{dist}\{x, E\} \le \frac{1}{n} \right\}.$$

We have $E \subset E_n$ for all n.

For each n we have $A = (A \cap E_n) \cup (A - E_n)$, so that

$$\mathcal{H}_{\alpha}(A) = \mathcal{H}_{\alpha}\big((A \cap E_n) \cup (A - E_n)\big) \ge \mathcal{H}_{\alpha}\big((A \cap E) \cup (A - E_n)\big),$$

where we have used monotonicity of \mathcal{H}_{α} and $A \cap E \subset A \cap E_n$.

Since dist $\{A \cap E; A - E_n\} \ge 1/n$ for each n, we have by Proposition 5.2 for each n that

$$\mathcal{H}_{\alpha}((A \cap E) \cup (A - E_n)) = \mathcal{H}_{\alpha}(A \cap E) + \mathcal{H}_{\alpha}(A - E_n).$$

Thus we have

$$\mathcal{H}_{\alpha}(A) \geq \mathcal{H}_{\alpha}(A \cap E) + \mathcal{H}_{\alpha}(A - E_n).$$

Using the set identity $A - E = (A - E_n) \cup (A \cap (E_n - E))$ and the subadditivity of \mathcal{H}_{α} we get

$$\mathcal{H}_{\alpha}(A-E) \leq \mathcal{H}_{\alpha}(A-E_n) + \mathcal{H}_{\alpha}(A \cap (E_n-E)).$$

Hence

$$\mathcal{H}_{\alpha}(A-E_n) \geq \mathcal{H}_{\alpha}(A-E) - \mathcal{H}_{\alpha}(A\cap(E_n-E)).$$

Thus for all n we have

$$\mathcal{H}_{\alpha}(A) \geq \mathcal{H}_{\alpha}(A \cap E) + \mathcal{H}_{\alpha}(A - E) - \mathcal{H}_{\alpha}(A \cap (E_n - E)).$$

The desired result follows if $\lim_{n\to\infty} \mathcal{H}_{\alpha}(A \cap (E_n - E)) = 0$. (This is Lemma 8.2 in the Ed.1 of text; Lemma 8.1 in Ed. 2.)

For $j \ge n$, the sets

$$F_j = \left\{ x \in A : \frac{1}{j+1} < \operatorname{dist}\{x; E\} \le \frac{1}{j} \right\}$$

satisfy

$$A \cap (E_n - E) = \bigcup_{j=n}^{\infty} F_j.$$

By subadditivity we have

$$\mathcal{H}_{\alpha}(A \cap (E_n - E)) \leq \sum_{j=n}^{\infty} \mathcal{H}_{\alpha}(F_j).$$

The conclusion $\lim_{n\to\infty} \mathcal{H}_{\alpha}(A \cap (E_n - E)) = 0$ follows if the series $\sum_{j=1}^{\infty} \mathcal{H}_{\alpha}(F_j)$ of nonnegative terms converges.

For $i, j \in \mathbb{N}$ both even or both odd, we have $dist\{F_i; F_j\} > 0$.

Thus applying Proposition 5.2 we have for any $m \in \mathbb{N}$ that

$$\sum_{j=1}^{m} \mathcal{H}_{\alpha}(F_j) \leq \sum_{h=1}^{m} \mathcal{H}_{\alpha}(F_{2h}) + \sum_{h=0}^{m} \mathcal{H}_{\alpha}(F_{2h+1}) = \mathcal{H}_{\alpha}\left(\bigcup_{h=1}^{m} F_{2h}\right) + \mathcal{H}_{\alpha}\left(\bigcup_{h=0}^{m-1} F_{2h+1}\right).$$

The two unions are subsets of A, so by monotonicity we have $\sum_{j=1}^{m} \mathcal{H}_{\alpha}(F_j)$ is bounded above by $2\mathcal{H}_{\alpha}(A) < \infty$.

Thus the series $\sum_{j=1}^{\infty} \mathcal{H}_{\alpha}(F_j)$ converges.

Homework Problem 10A. Where did we used that E is closed in the above proof?