Math 541 Lecture #11

II.9: Extending measures from semialgebras to σ -algebras

9. Extending measures from semialgebras to σ -algebras. Recall the Carathéodory procedure generates from an outer measure μ_e (as determined by a sequential covering \mathcal{Q} of X and a nonnegative function $\lambda : \mathcal{Q} \to \mathbb{R}^*$) a σ -algebra \mathcal{A} and a (complete) measure μ on \mathcal{A} .

It may happen that $\mathcal{Q} \not\subset \mathcal{A}$ or that for some $E \in \mathcal{Q} \cap \mathcal{A}$ we have $\mu_e(E) \neq \lambda(E)$ (we saw the latter for Lebsegue-Stieltjes outer measure and Hausdorff outer measure).

We describe sufficient conditions on \mathcal{Q} and λ by which we obtain $\mathcal{Q} \subset \mathcal{A}$ and $\mu_e(Q) = \lambda(Q)$ for all $Q \in \mathcal{Q}$.

Definition. A collection Q of subsets of X is a **semi-algebra** if

- (i) the intersection of any two elements of \mathcal{Q} is in \mathcal{Q} , and
- (ii) the difference $Q_1 Q_2$ of any two elements of \mathcal{Q} is a finite pairwise disjoint union of elements of \mathcal{Q} .

Examples. (a) The collection of $\frac{1}{2}$ -closed dyadic cubes in \mathbb{R}^n is a semialgebra.

(b) The collection of open subintervals of \mathbb{R} is not a semialgebra because property (ii) fails: the difference $(0,3) - (1,2) = (0,1] \cup [2,3)$ is not the finite pairwise disjoint union of open intervals.

Definition. Let $\mathcal{Q} \subset \mathcal{P}(X)$. A function $\lambda : \mathcal{Q} \to \mathbb{R}^*$ is **finitely additive** on \mathcal{Q} if for any finite collection Q_1, \ldots, Q_m of pairwise disjoint elements of \mathcal{Q} whose union is in \mathcal{Q} , there holds

$$\lambda\left(\bigcup_{j=1}^{m} Q_j\right) = \sum_{j=1}^{m} \lambda(Q_j).$$

[We need to assume that the union is in Q so that λ is defined on it, because neither Q being a sequential covering nor Q a semialgebra guarantees that a union of elements of Q is in Q.]

Examples. (a) The Euclidean volume of $\frac{1}{2}$ -closed dyadic cubes is finitely additive.

(b) The Lebesgue-Stieltjes function λ_f is finitely additive.

(c) For the Hausdorff outer measure, the function $\lambda(E) = (\operatorname{diam}(E))^{\alpha}$ on \mathcal{E}_{ϵ} is not finitely additive.

Homework Problem 11A: Prove parts (b) and (c)

Definition. A function $\lambda : \mathcal{Q} \to \mathbb{R}^*$ is **countably subadditive** on \mathcal{Q} if for any countable collection $\{Q_j\}$ of elements of \mathcal{Q} whose union is in \mathcal{Q} , there holds

$$\lambda\left(\bigcup_{j=1}^{\infty}Q_j\right) \leq \sum_{j=1}^{\infty}\lambda(Q_j).$$

Proposition 9.1. Let \mathcal{Q} be a sequential covering. If \mathcal{Q} is a semialgebra and $\lambda : \mathcal{Q} \to \mathbb{R}^*$ is finitely additive on \mathcal{Q} , then $\mathcal{Q} \subset \mathcal{A}$. If, in addition, λ is countably subadditive on \mathcal{Q} , then $\mu_e(Q) = \lambda(Q)$ for all $Q \in \mathcal{Q}$.

Proof. Fix an arbitrary $Q \in \mathcal{Q}$, and select $A \subset X$.

If $\mu_e(A) = \infty$, then we have

$$\mu_e(A) \ge \mu_e(A \cap Q) + \mu_e(A - Q).$$

So suppose that $\mu_e(A) < \infty$.

For $\epsilon > 0$ there is a countable collection $\{Q_{\epsilon,n}\}$ in \mathcal{Q} such that

$$\epsilon + \mu_e(A) \ge \sum_{n=1}^{\infty} \lambda(Q_{\epsilon,n}) \text{ and } A \subset \bigcup_{n=1}^{\infty} Q_{\epsilon,n}.$$

For each fixed n we have

$$Q_{\epsilon,n} = (Q_{\epsilon,n} \cap Q) \cup (Q_{\epsilon,n} - Q).$$

Since \mathcal{Q} is a semialgebra, the intersection $Q_{\epsilon,n} \cap Q$ is in \mathcal{Q} ; and the difference

$$Q_{\epsilon,n} - Q = \bigcup_{j=1}^{m_n} Q_{j,n}$$

where $Q_{j,n}$, $j = 1, \ldots, m_n$, are disjoint elements of Q.

Hence each $Q_{\epsilon,n}$ is the disjoint union of finitely many elements of Q. By the assumed finite additivity of λ we have

$$\lambda(Q_{\epsilon,n}) = \lambda(Q_{\epsilon,n} \cap Q) + \sum_{j=1}^{m_n} \lambda(Q_{j,n})$$

The elements of the collection $\{Q_{\epsilon,n} \cap Q\}$ are in \mathcal{Q} and their union covers $A \cap Q$.

Also, the elements of the collection $\{Q_{j,n}\}$, for $j = 1, \ldots, m_n$ and $n \in \mathbb{N}$, are in \mathcal{Q} , and their union covers A - Q.

Thus by the definition of outer measure, we have

$$\sum_{n=1}^{\infty} \lambda(Q_{\epsilon,n}) = \sum_{n=1}^{\infty} \lambda(Q_{\epsilon,n} \cap Q) + \sum_{n=1}^{\infty} \sum_{j=1}^{m_n} \lambda(Q_{j,n})$$
$$\geq \mu_e(A \cap Q) + \mu_e(A - Q).$$

Therefore for all $\epsilon > 0$ we have

$$\epsilon + \mu_e(A) \ge \mu_e(A \cap Q) + \mu_e(A - Q).$$

This implies that $Q \in \mathcal{A}$.

To show that $\mu_e(Q) = \lambda(Q)$ for all $Q \in \mathcal{Q}$, we assume WLOG that $\mu_e(Q) < \infty$.

By the definition of the outer measure, we know that $\mu_e(Q) \leq \lambda(Q)$, so it suffices to show the opposite inequality.

Fix $\epsilon > 0$ and let $\{Q_{\epsilon,n}\}$ be a countable collection of elements in \mathcal{Q} such that

$$\epsilon + \mu_e(Q) \ge \sum_{n=1}^{\infty} \lambda(Q_{\epsilon,n}) \text{ and } Q \subset \bigcup_{n=1}^{\infty} Q_{\epsilon,n}.$$

As done before, we have for each $n \in \mathbb{N}$ the existence of $Q_{j,n} \in \mathcal{Q}, j = 1, \ldots, m_n$, for which

$$\lambda(Q_{\epsilon,n}) = \lambda(Q_{\epsilon,n} \cap Q) + \sum_{j=1}^{m_n} \lambda(Q_{j,n}),$$

where the elements of $\{Q_{\epsilon,n} \cap Q\}$ belong to \mathcal{Q} ; hence for each $n \in \mathbb{N}$,

$$\lambda(Q_{\epsilon,n}) \ge \lambda(Q_{\epsilon,n} \cap Q).$$

Since $Q \subset \bigcup_{n=1}^{\infty} Q_{\epsilon,n}$, we have that

$$Q = \bigcup_{n=1}^{\infty} \left(Q \cap Q_{\epsilon,n} \right),$$

which union belongs to \mathcal{Q} because Q does.

By the assumed countable subadditivity of λ we have

$$\lambda(Q) = \lambda\left(\bigcup_{n=1}^{\infty} (Q \cap Q_{\epsilon,n})\right) \le \sum_{n=1}^{\infty} \lambda(Q_{\epsilon,n} \cap Q) \le \sum_{n=1}^{\infty} \lambda(Q_{\epsilon,n}) \le \mu_e(Q) + \epsilon.$$

As this holds for any $\epsilon > 0$ we obtain the opposite inequality.

Definition. A function λ is said to be a measure on a semialgebra \mathcal{Q} if it satisfies

- (i) the domain of λ is \mathcal{Q} ,
- (ii) λ is nonnegative real-valued on \mathcal{Q} ,
- (iii) λ is countably additive on \mathcal{Q} , in the sense that for a countable collection of pairwise disjoint $\{Q_i\}$ in \mathcal{Q} whose union is on \mathcal{Q} we have

$$\lambda\left(\bigcup_{i=1}^{\infty}Q_i\right) = \sum_{i=1}^{\infty}\lambda(Q_i),$$

(iv) $\lambda(Q) < \infty$ for some $Q \in \mathcal{Q}$.

Proposition A. If λ is a measure on a semialgebra \mathcal{Q} , then λ is finitely additive and countably subadditive on \mathcal{Q} .

Homework problem 11B. Prove that a measure λ on a semialgebra is finitely additive. [A proof that λ is countably subadditive is found in the appendix of Lecture Note #12.]

Combining Proposition 9.1 and Proposition A gives: for a sequential covering \mathcal{Q} of X and a function λ defined on \mathcal{Q} , if \mathcal{Q} is a semialgebra and λ is a measure on \mathcal{Q} , then $\mathcal{Q} \subset \mathcal{A}$ and $\mu_e(Q) = \lambda(Q)$ for all $Q \in \mathcal{Q}$, and the (complete) measure μ on the σ -algebra \mathcal{A} , which is the restriction of the outer measure μ_e to \mathcal{A} , is an extension of the measure λ on \mathcal{Q} .