
Math 541 Lecture #12
II.10: Necessary and Sufficient Conditions for Measurability Part I

10. Necessary and sufficient conditions for measurability. Recall that a measure
λ on a semilagebra Q (that is also a sequential covering of X) generates a σ-algebra A
and a measure µ on A (the restriction of the outer measure µe to A).

That is, the measure µ on A is an extension of the measure λ on Q in that Q ⊂ A and
λ(E) = µ(E) for all E ∈ Q.

Recall that A consists of those sets E in X for which

µe(A) ≥ µe(A ∩ E) + µe(A− E)

for all sets A in X; we say the elements of A are µ-measurable (what we called µe-
measurable sets before).

We let {X,A, µ} be the measure space generated by the measure λ on the sequential
covering and semialgebra Q.

We will describe sufficient and necessary conditions for the µ-measurable sets in terms
of sets derived from elements of Q.

Denote by Qσ the collection of all sets that are countable unions of elements of Q.

Note that Qσ ⊂ A since Q ⊂ A and the latter is a σ-algebra.

Lemma. For each element E = ∪Qn of Qσ there exists a countable collection of pairwise
disjoint set {Dn} in A such that Dn ⊂ Qn for all n ∈ N, and E = ∪Dn, and each Dn is
a finite union of pairwise disjoint elements of Q.

Proof. Recall that we have seen before that any countable union can be rewritten as a
countable union of disjoint sets: E = ∪Dn where D1 = Q1, and

Dn = Qn −
n−1⋃
j=1

Qj =
n−1⋂
j=1

(Qn −Qj), n ∈ N.

Here Dn ⊂ Qn, and since Q ⊂ A and the latter is a σ-algebra, we have Dn ∈ A.

Because Q is a semialgebra, each difference Qn−Qj is the finite disjoint union of elements
of Q.

Then for each n and j there exist k(j) disjoint sets Pj,1, . . . , Pj,k(j) in Q (with k depending
on n as well but suppressed in the notation for the sake of clarity) such that

Qn −Qj =

k(j)⋃
l=1

Pj,l.

We then have that

Dn =
n−1⋂
j=1

k(j)⋃
l=1

Pj,l

 .



Using the distributive law A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C), we have

(A ∪B) ∩ (C ∪D) = (A ∩ C) ∪ (A ∩D) ∪ (B ∩ C) ∪ (B ∩D).

Applying this repeatedly gives

Dn = (P1,1 ∪ P1,2 ∪ · · · ∪ P1,k(1)) ∩ (P2,1 ∪ P2,2 ∪ · · · ∪ P2,k(2))

∩ · · · ∩ (Pn−1,1 ∪ Pn−1,2 ∪ · · · ∪ Pn−1,k(n−1))
= (P1,1 ∩ P2,1 ∩ · · · ∩ Pn−1,1) ∪ (P1,1 ∩ P2,1 ∩ · · · ∩ Pn−1,2)
∪ · · · ∪ (P1,k(1) ∩ P2,k(2) ∩ · · · ∩ Pn−1,k(n−1)).

That is, we have a union of k(1)k(2) · · · k(n− 1) sets of the form

n−1⋂
j=1

Pj,s(j),

where for each j the value of s(j) is chosen from {1, 2, . . . , k(j)}.
Because a semialgebra is also “closed” under intersections, we have that each of these
sets ∩n−1j=1Pj,s(j) belongs to Q.

For another set ∩n−1j=1Pj,r(j), where r(j) ∈ {1, 2, . . . , k(j)} differs from s(j) for some j = ĵ,

we have that ∩n−1j=1Pj,s(j) and ∩n−1j=1Pj,r(j) are disjoint because the first is a subset of Pĵ,s(ĵ),
the second a subset of Pĵ,r(ĵ), while Pĵ,s(ĵ) and Pĵ,r(ĵ) are disjoint.

Thus each Dn is a disjoint union of elements of Q. �

Denote by Qσδ the collection of sets that are countable intersections of elements of Qσ.

Note that Qσδ ⊂ A because Qσ ⊂ A and the latter is a σ-algebra.

Proposition 10.1. If E ⊂ X is of finite outer measure, then for each ε > 0 there exists
Eσ,ε ∈ Qσ such that

E ⊂ Eσ,ε and µe(E) ≥ µ(Eσ,ε)− ε.

Moreover, there exists a set Eσδ ∈ Qσδ such that

E ⊂ Eσδ and µe(E) = µ(Eσδ).

Proof. For a given ε > 0 there exists {Qn,ε} in Q such that

µe(E) + ε ≥
∞∑
n=1

λ(Qn,ε), E ⊂
⋃

Qn,ε.

Set Eσ,ε = ∪Qn,ε.

By the Lemma we can replace ∪Qn,ε by a union of disjoint elements Dn,ε ∈ A satisfying
Dn,ε ⊂ Qn,ε (and where each Dn,ε is a finite disjoint union of elements of Q – something
we will not need here).

Then µ(Dn,ε) = µe(Dn,ε) ≤ µe(Qn,ε) ≤ λ(Qn,ε) because Dn,ε ∈ A and Dn,ε ⊂ Qn,ε ∈ Q.



Thus by the pairwise disjointness of {Dn,ε} and the countable additivity of µ we get

∞∑
n=1

λ(Qn,ε) ≥
∞∑
n=1

µ(Dn,ε) = µ

(
∞⋃
n=1

Dn,ε

)
= µ(Eσ,ε).

This gives
µe(E) + ε ≥ µ(Eσ,ε).

Now for each n ∈ N, there is Eσ,1/n ∈ Qσ that satifies

µ(Eσ,1/n)− 1

n
≤ µe(E) ≤ µe(Eσ,1/n) = µ(Eσ,1/n),

the last inequality holds by E ⊂ Eσ,1/n and the monotonicity of µe, while the last equality
holds by µ = µe on A.

The set Eσδ = ∩Eσ,1/n ∈ Qσδ contains E because each Eσ,1/n does.

Homework Problem 12A. Prove that Eσδ satisfies µe(E) = µ(Eσδ). �



Appendix. Proof that a measure λ on semialgebra is countably subadditive.

Suppose for {Qn} ⊂ Q that

Q =
∞⋃
n=1

Qn ∈ Q.

By Lemma in this Lecture Note there exist disjoint subsets Dn ⊂ Qn such that

Q =
∞⋃
n=1

Dn,

where D1 = Q1 and for each n ≥ 2, there exists k(n) ∈ N and sets Pj,l ∈ Q for all
j = 1, . . . , n and l = 1, . . . , k(n) such that

Dn = Qn −
n−1⋃
j=1

Qj =
n−1⋂
j=1

(Qn −Qj) =
n−1⋂
j=1

k(j)⋃
l=1

Pj,l

 =
⋃
s

(
n−1⋂
j=1

Pj,s(j)

)
.

Set

En,s =
n−1⋂
j=1

Pj,s(j) ∈ Q.

For different functions s, the sets En,s are pairwise disjoint. Then

Q =
∞⋃
n=1

Dn =
∞⋃
n=1

⋃
s

En,s

is a countable union of pairwise disjoint sets. Hence by countable additivity we have

λ(Q) =
∞∑
n=1

∑
s

λ(En,s).

If we can show the claim that for all n there holds∑
s

λ(En,s) ≤ λ(Qn)

then we obtain the desired countable subadditivity,

λ

(
∞⋃
n=1

Qn

)
≤

∞∑
n=1

λ(Qn).

It remains to establish the claim. To this end we consider Qn −Dn, i.e.,

Qn −
⋃
s

En,s = Qn ∩

(⋃
s

En,s

)c

= Qn ∩

(⋂
s

Ec
n,s

)
=
⋂
s

(Qn ∩ Ec
n,s) =

⋂
s

(Qn − En,s).



Since Qn ∈ Q and En,s ∈ Q, there exists m(n, s) ∈ N and disjoint An,s,t ∈ Q for
t = 1, . . . ,m(n, s) such that

Qn − En,s =

m(n,s)⋃
t=1

An,s,t.

Thus

Qn −
⋃
s

En,s =
⋂
s

m(n,s)⋃
t=1

An,s,t

 .

The finite intersection of the finite disjoint union can be written as a finite disjoint union
of finite intersections of the sets An,s,t where these finite intersections belong toQ. (Recall
the proof of the Lemma in this Lecture Note wherein the order of the intersection and
union were reversed.) That is, there exist finitely many disjoint elements B1, . . . , Bu of
Q such that

Qn −
⋃
s

En,s =
u⋃
i=1

Bi.

Because Dn ⊂ Qn, we obtain

Qn =
⋃
s

En,s ∪
u⋃
i=1

Bi.

Thus by finite additivity we have

λ(Qn) =
∑
s

λ(En,s) +
n∑
i=1

λ(Bi).

Since λ ≥ 0, we obtain

λ(Qn) ≥
∑
s

λ(En,s),

which establishes the claim.


