Math 541 Lecture #13 II.10: Necessary and Sufficient Conditions for Measurability Part II

10. Necessary and sufficient conditions for measurability. We continue with approximating μ -measurable sets.

Proposition 10.2. Let $\{X, \mathcal{A}, \mu\}$ be the measure space generated by the measure λ on the sequential covering and semialgebra \mathcal{Q} . A set $E \subset X$ of finite outer measure is μ -measurable if and only if for every $\epsilon > 0$ there exists a set $E_{\sigma,\epsilon}$ in \mathcal{Q}_{σ} such that

$$E \subset E_{\sigma,\epsilon}$$
 and $\mu_e(E_{\sigma,\epsilon} - E) \leq \epsilon$.

Proof. Let $E \subset X$ have finite outer measure.

Suppose E is μ -measurable.

Then $\mu(E) = \mu_e(E) < \infty$.

Since $\mu_e(E) < \infty$, for every $\epsilon > 0$ we have by Proposition 10.1 the existence of $E_{\sigma,\epsilon} \in \mathcal{Q}_{\sigma} \subset \mathcal{A}$ such that $E \subset E_{\sigma,\epsilon}$ and

$$\mu(E) + \epsilon = \mu_e(E) + \epsilon \ge \mu(E_{\sigma,\epsilon}).$$

Hence

$$-\mu(E) \le -\mu(E_{\sigma,\epsilon}) + \epsilon.$$

Since μ is a measure on \mathcal{A} , we know for $A, B \in \mathcal{A}$ with $A \subset B$ that $\mu(B - A) = \mu(B) - \mu(A)$ when $\mu(A) < \infty$ (Proposition 3.1).

Thus with A = E (hence $\mu(E) = \mu(A) < \infty$) and $B = E_{\sigma,\epsilon}$ we obtain

$$\mu(E_{\sigma,\epsilon} - E) = \mu(E_{\sigma,\epsilon}) - \mu(E) \le \mu(E_{\sigma,\epsilon}) - \mu(E_{\sigma,\epsilon}) + \epsilon = \epsilon.$$

Since $E, E_{\sigma,\epsilon} \in \mathcal{A}$ we have $E_{\sigma,\epsilon} - E \in \mathcal{A}$, and since μ is the restriction of μ_e to \mathcal{A} , we obtain

$$\mu_e(E_{\sigma,\epsilon} - E) \le \epsilon.$$

Now suppose that for every $\epsilon > 0$ there exists $E_{\sigma,\epsilon} \in \mathcal{Q}_{\sigma}$ such that $E \subset E_{\sigma,\epsilon}$ and $\mu_e(E_{\sigma,\epsilon} - E) \leq \epsilon$.

We are to verify that E is μ -measurable, i.e., for all $A \subset X$ there holds

$$\mu_e(A) \ge \mu_e(A \cap E) + \mu_e(A - E).$$

If $\mu_e(A) = \infty$, there is nothing to show, so suppose $\mu_e(A) < \infty$.

Since $E_{\sigma,\epsilon}$ is μ -measurable $(E_{\sigma,\epsilon} \in \mathcal{Q}_{\sigma} \subset \mathcal{A})$, $A \cap E_{\sigma,\epsilon} \supset A \cap E$, and $A - E_{\sigma,\epsilon} = (A - E) - A \cap (E_{\sigma,\epsilon} - E)$ (verify by Venn diagram), we have

$$\mu_e(A) = \mu_e(A \cap E_{\sigma,\epsilon}) + \mu_e(A - E_{\sigma,\epsilon})$$

$$\geq \mu_e(A \cap E) + \mu_e((A - E) - A \cap (E_{\sigma,\epsilon} - E)).$$

The outer measure μ_e is finitely subadditive, so that as

$$A - E = \left((A - E) - A \cap (E_{\sigma,\epsilon} - E) \right) \cup (A \cap (E_{\sigma,\epsilon} - E))$$

(verify by Venn diagram), we have

$$\mu_e(A-E) \le \mu_e((A-E) - A \cap (E_{\sigma,\epsilon} - E)) + \mu_e(A \cap (E_{\sigma,\epsilon} - E)).$$

Since $A \cap (E_{\sigma,\epsilon} - E) \subset A$ and μ_e is monotone, we have $\mu_e(A \cap (E_{\sigma,\epsilon} - E)) \leq \mu_e(A) < \infty$, so that

$$\mu_e(A) \ge \mu_e(A \cap E) + \mu_e(A - E) - \mu_e(A \cap (E_{\sigma,\epsilon} - E)).$$

Since $A \cap (E_{\sigma,\epsilon} - E) \subset E_{\sigma,\epsilon} - E$ and μ_e is monotone, we obtain

$$\mu_e(A \cap (E_{\sigma,\epsilon} - E)) \le \mu_e(E_{\sigma,\epsilon} - E) \le \epsilon,$$

and so

$$\mu_e(A) \ge \mu_e(A \cap E) + \mu_e(A - E) - \epsilon.$$

The arbitrariness of $\epsilon > 0$ gives the μ -measurability of E.

Proposition 10.3. Let $\{X, \mathcal{A}, \mu\}$ be the measure space generated by the measure λ on the sequential covering and semialgebra \mathcal{Q} . A set $E \subset X$ of finite outer measure is μ -measurable if and only if there exists a set $E_{\sigma,\delta} \in \mathcal{Q}_{\sigma\delta}$ such that

$$E \subset E_{\sigma,\delta}$$
 and $\mu_e(E_{\sigma\delta} - E) = 0.$

Proof. Let E have finite outer measure.

Suppose that E is μ -measurable.

Then $\mu(E) = \mu_e(E) < \infty$.

Since $\mu_e(E) < \infty$, there is by Proposition 10.1 a set $E_{\sigma\delta} \in \mathcal{Q}_{\sigma\delta}$ such that $E \subset E_{\sigma\delta}$ and $\mu_e(E) = \mu(E_{\sigma\delta})$.

The set $E_{\sigma\delta}$ is μ -measurable because $E_{\sigma\delta} \in \mathcal{Q}_{\sigma\delta} \subset \mathcal{A}$.

Since E is μ -measurable, the set $E_{\sigma\delta} - E$ is μ -measurable.

Because $\mu(E) < \infty$, we have

$$\mu_e(E_{\sigma\delta} - E) = \mu(E_{\sigma\delta} - E) = \mu(E_{\sigma\delta}) - \mu(E) = 0.$$

Now suppose there exists $E_{\sigma\delta} \in \mathcal{Q}_{\sigma\delta}$ such that $E \subset E_{\sigma\delta}$ and $\mu_e(E_{\sigma\delta} - E) = 0$. Because $\mathcal{Q}_{\sigma\delta} \subset \mathcal{A}$, the set $E_{\sigma\delta}$ is μ -measurable.

We are to show that for all $A \in \mathcal{P}(X)$, there holds

$$\mu_e(A) \ge \mu_e(A \cap E) + \mu_e(A - E).$$

If $\mu_e(A) = \infty$, there is nothing to show, so we assume that $\mu_e(A) < \infty$.

Since $E_{\sigma\delta}$ is μ -measurable, $A \cap E_{\sigma\delta} \supset A \cap E$, and $A - E_{\sigma\delta} = (A - E) - A \cap (E_{\sigma\delta} - E)$ (verify by Venn diagram), we have

$$\mu_e(A) = \mu_e(A \cap E_{\sigma\delta}) + \mu_e(A - E_{\sigma\delta})$$

$$\geq \mu_e(A \cap E) + \mu_e((A - E) - A \cap (E_{\sigma\delta} - E))$$

Since $A - E = ((A - E) - A \cap (E_{\sigma\delta} - E)) \cup (A \cap (E_{\sigma\delta} - E))$ (verify by Venn diagram) we have by the finite subadditivity of the outer measure that

 $\mu_e(A-E) \le \mu_e\big((A-E) - A \cap (E_{\sigma\delta} - E)\big) + \mu_e\big(A \cap (E_{\sigma\delta} - E)\big).$

Since $A \cap (E_{\sigma\delta} - E) \subset A$ and $\mu_e(A) < \infty$, we have by monotonicity of the outer measure that $\mu_e(A \cap (E_{\sigma\delta} - E)) < \infty$, so that

$$\mu_e((A-E) - A \cap (E_{\sigma\delta} - E)) \ge \mu_e(A-E) - \mu_e(A \cap (E_{\sigma\delta} - E)).$$

Thus we obtain

$$\mu_e(A) \ge \mu_e(A \cap E) + \mu_e(A - E) - \mu_e(A \cap (E_{\sigma\delta} - E))$$

Since $A \cap (E_{\sigma\delta} - E) \subset E_{\sigma\delta} - E$, $\mu_e(E_{\sigma\delta} - E) = 0$, and μ_e is monotone, we obtain

$$\mu_e(A \cap (E_{\sigma\delta} - E)) = 0.$$

Therefore E is μ -measurable.