Math 541 Lecture #14 II.11: More on Extensions from Semialgebras to σ -algebras II.12: The Lebesgue Measure of Sets in \mathbb{R}^N , Part I

11. More on Extensions from semiaglebras to σ -algebras. We will develop a bit more the theory on the extension of a measure λ on semialgebra and sequential covering Q to a measure space $\{X, \mathcal{A}, \mu\}$.

Theorem 11.1. Every measure λ on a semialgebra \mathcal{Q} (and sequential covering of X) generates a measure space $\{X, \mathcal{A}, \mu\}$ where \mathcal{A} is a σ -algebra containing \mathcal{Q} and μ is a complete measure on \mathcal{A} , which agrees with λ on \mathcal{Q} . Moreover, if \mathcal{Q}_0 is the smallest σ -algebra containing \mathcal{Q} , then the restriction of μ to \mathcal{Q}_0 is an extension of λ to \mathcal{Q}_0 , and this extension is unique if λ is a σ -finite measure (i.e., there is a countable $\{Q_n\}$ in \mathcal{Q} such that $X = \bigcup Q_n$ and $\lambda(Q_n) < \infty$).

Proof. There only remains to show the uniqueness of the extension of λ to \mathcal{Q}_0 when λ is σ -finite.

To this end, suppose μ_1, μ_2 are extensions of λ to \mathcal{Q}_0 , and let μ_e be the outer measure determined by λ on \mathcal{Q} .

The elements of \mathcal{Q}_{σ} are elements of \mathcal{Q}_0 , i.e., $\mathcal{Q}_{\sigma} \subset \mathcal{Q}_0$, because \mathcal{Q}_0 is the smallest σ -algebra containing \mathcal{Q} .

Every element of Q_{σ} can be written as the countable disjoint union of elements of Q (see the Lemma in Lecture #12).

Since the restriction of each of μ_1 and μ_2 to \mathcal{Q} is λ , i.e., $\mu_i(Q) = \lambda(Q)$ for all $Q \in \mathcal{Q}$ (for each i = 1, 2), we have agreement of μ_1 and μ_2 on \mathcal{Q}_{σ} by the countable additivity of the measures.

Since $\mu_e(Q) = \lambda(Q)$ for all $Q \in Q$, we also have agreement of μ_1 and μ_2 with μ_e on Q_{σ} . Next, for $E \in Q_0$ having finite outer measure $\mu_e(E)$, we will show that $\mu_1(E)$ and $\mu_2(E)$ agree with $\mu_e(E)$.

For every $\epsilon > 0$ there is by Proposition 10.1 (applied to μ_1 as an extension of λ) a set $E_{\sigma,\epsilon} \in \mathcal{Q}_{\sigma}$ such that $E \subset E_{\sigma,\epsilon}$ and

$$\mu_1(E_{\sigma,\epsilon}) \le \mu_e(E) + \epsilon.$$

These imply by the monotonicity of μ_1 that

$$\mu_1(E) \le \mu_1(E_{\sigma,\epsilon}) \le \mu_e(E) + \epsilon.$$

We will prove the opposite inequality.

Since $\epsilon > 0$ is arbitrary, we obtain for all $E \in \mathcal{Q}_0$ of finite outer measure that

$$\mu_1(E) \le \mu_e(E).$$

Since $E \in \mathcal{Q}_0$ and $E_{\sigma,\epsilon} \in \mathcal{Q}_{\sigma} \subset \mathcal{Q}_0$, we have $E_{\sigma,\epsilon} - E \in \mathcal{Q}_0$.

The restriction of μ_e to \mathcal{Q}_0 is a measure because the restriction of μ_e to \mathcal{A} is a measure and $\mathcal{Q}_0 \subset \mathcal{A}$.

Then, since $\mu_e(E) < \infty$, $\mu_1 = \mu_e$ on \mathcal{Q}_{σ} , and $\mu_1(E_{\sigma,\epsilon}) - \mu_e(E) \leq \epsilon$, we have

$$\mu_e(E_{\sigma,\epsilon} - E) = \mu_e(E_{\sigma,\epsilon}) - \mu_e(E) = \mu_1(E_{\sigma,\epsilon}) - \mu_e(E) \le \epsilon$$

Since $E \subset E_{\sigma,\epsilon}$, we have $E_{\sigma\epsilon} = E \cup (E_{\sigma,\epsilon} - E)$ as a disjoint union of elements of \mathcal{Q}_0 . Since μ_e and μ_1 are measures on \mathcal{Q}_0 with $\mu_e = \mu_1$ on \mathcal{Q}_σ , $\mu_1(F) \leq \mu_e(F)$ for all $F \in \mathcal{Q}_0$ satisfying $\mu_e(F) < \infty$, and $\mu_e(E_{\sigma,\epsilon} - E) \leq \epsilon$, we have

$$\mu_e(E) \le \mu_e(E_{\sigma,\epsilon}) = \mu_1(E_{\sigma,\epsilon})$$
$$= \mu_1(E) + \mu_1(E_{\sigma,\epsilon} - E)$$
$$\le \mu_1(E) + \mu_e(E_{\sigma,\epsilon} - E)$$
$$\le \mu_1(E) + \epsilon.$$

The arbitrariness of ϵ implies that $\mu_e(E) \leq \mu_1(E)$.

Thus for $E \in \mathcal{Q}_0$ with finite outer measure we obtain $\mu_1(E) = \mu_e(E)$.

Replacing μ_1 with μ_2 in this argument results in $\mu_2(E) = \mu_e(E)$ for all $E \in \mathcal{Q}_0$ with finite outer measure.

Finally, we show that $\mu_1(E) = \mu_2(E)$ for any $E \in \mathcal{Q}_0$.

Since λ is σ -finite, there is a countably collection $\{Q_n\}$ in \mathcal{Q} such that $\mu_e(Q_n) < \infty$ for each n, and

$$E = \bigcup_{n=1}^{\infty} Q_n \cap E,$$

where each $Q_n \cap E$ is in \mathcal{Q}_0 and has finite outer measure.

As done before, we may assume that the collection $\{Q_n\}$ is pairwise disjoint.

Since μ_1 and μ_2 agree on those elements of \mathcal{Q}_0 of finite outer measure, we have

$$\mu_1(E) = \sum_{n=1}^{\infty} \mu_1(Q_n \cap E) = \sum_{n=1}^{\infty} \mu_2(Q_n \cap E) = \mu_2(E).$$

This shows that $\mu_1 = \mu_2$ on \mathcal{Q}_0 .

The lack of uniqueness of the extension for non- σ -finite measures λ is a homework problem.

12. The Lebesgue Measure of Sets in \mathbb{R}^N . The collection \mathcal{Q} of $\frac{1}{2}$ -closed dyadic cubes, including the empty set, is a semialgebra and a sequential covering of \mathbb{R}^N .

The Euclidean measure (or volume) λ of the $\frac{1}{2}$ -closed dyadic cubes in \mathbb{R}^N is a σ -finite measure on \mathcal{Q} , and hence λ is finitely additive and countably subadditive.

The measure λ on \mathcal{Q} determines an outer measure μ_e on \mathbb{R}^N , called the **Lebesgue outer** measure on \mathbb{R}^N .

Proposition 12.1. Let \mathcal{M} be the σ -algebra generated by the Euclidean measure λ on \mathcal{Q} . Then \mathcal{M} contains

- (i) the $\frac{1}{2}$ -closed dyadic cubes \mathcal{Q} ,
- (ii) all open subsets of \mathbb{R}^N ,
- (iii) all closed subsets of \mathbb{R}^N , and
- (iv) all sets in \mathbb{R}^N of the form \mathcal{F}_{σ} , \mathcal{G}_{δ} , $\mathcal{F}_{\sigma\delta}$, $\mathcal{G}_{\delta\sigma}$, etc.

Proof. The collection of $\frac{1}{2}$ -closed dyadic cubes Q and the Euclidean measure λ on them satisfy the assumptions of Proposition 9.1.

This implies that $\mathcal{Q} \subset \mathcal{M}$.

Since every open set in \mathbb{R}^N is a countable union of $\frac{1}{2}$ -closed dyadic cubes, the open sets are in \mathcal{M} .

Since the σ -algebra \mathcal{M} is closed under complements, every closed subset is in \mathcal{M} .

Since the σ -algebra \mathcal{M} is closed under countable unions and countable intersections, sets of the type \mathcal{F}_{σ} , \mathcal{G}_{δ} , etc., are in \mathcal{M} .

The restriction μ of the Lebesgue outer measure μ_e to \mathcal{M} is the **Lebesgue measure** in \mathbb{R}^N , and the sets in \mathcal{M} are called the **Lebesgue measurable** sets in \mathbb{R}^N .

The Lebesgue measure μ on \mathcal{M} is an extension of the Euclidean measure λ on \mathbb{Q} , that is μ extends the notion of volume from dyadic cubes to the sets in \mathcal{M} .

Recall the Borel σ -algebra \mathcal{B} is the smallest σ -algebra containing the open sets.

Also, each element of the Borel σ -algebra is called a Borel set.

The Borel sets include the sets of type \mathcal{F}_{σ} , \mathcal{G}_{δ} , etc.

Corollary. (i) $\mathcal{B} \subset \mathcal{M}$. (ii) Every finite or countable infinite subset of \mathbb{R}^N has Lebesgue measure 0.

Proof. (i) Because \mathcal{M} is σ -algebra containing the open sets and \mathcal{B} is the smallest σ -algebra containing the open sets, we have $\mathcal{B} \subset \mathcal{M}$.

(ii) For $x \in \mathbb{R}^N$, the singleton set $\{x\}$ belongs to \mathcal{M} because its complement is open.

Since a singleton set $\{x\}$ belongs to $\frac{1}{2}$ -closed dyadic cubes of arbitrarily small Euclidean measure, we have $\mu_e(\{x\}) = 0$, and so $\mu(\{x\}) = 0$ since μ is the restriction of μ_e to \mathcal{M} .

A finite subset of \mathbb{R}^N is a disjoint union of singleton sets.

Since each singleton set has Lebesgue measure zero, their finite union has Lebesgue measure zero by finite additivity.

A countably infinite subset of \mathbb{R}^N is a disjoint union of singleton sets.

Since each singleton set has Lebesgue measure zero, their countable union has Lebesgue measure zero by countable additivity. $\hfill \Box$

Remark. We will see soon that there are Lebesgue measurable sets that are not Borel sets, that is, the inclusion $\mathcal{B} \subset \mathcal{M}$ is strict.

Homework Problem 14A. Let \mathcal{Q}_0 be the smallest σ -algebra containing the semialgebra \mathcal{Q} of $\frac{1}{2}$ -closed dyadic cubes in \mathbb{R}^N . Prove that \mathcal{Q}_0 is the Borel σ -algebra \mathcal{B} on \mathbb{R}^N .