Math 541 Lecture #14
II.11: More on Extensions from Semialgebras to o-algebras

I1.12: The Lebesgue Measure of Sets in RV, Part I

11. More on Extensions from semiaglebras to o-algebras. We will develop a bit
more the theory on the extension of a measure A\ on semialgebra and sequential covering
Q to a measure space {X, A, u}.

Theorem 11.1. Every measure A on a semialgebra Q (and sequential covering of X)
generates a measure space {X, A, u} where A is a o-algebra containing Q and p is a
complete measure on A, which agrees with A on Q. Moreover, if Qg is the smallest
o-algebra containing Q, then the restriction of p to Qg is an extension of A to Qp, and

this extension is unique if A is a o-finite measure (i.e., there is a countable {@,} in Q
such that X = UQ,, and \(Q,) < 00).

Proof. There only remains to show the uniqueness of the extension of A\ to Qy when \ is
o-finite.

To this end, suppose p1, 12 are extensions of A to Qy, and let u, be the outer measure
determined by A\ on Q.

The elements of Q, are elements of 9y, i.e., Q, C Qp, because Qy is the smallest o-
algebra containing Q.

Every element of Q, can be written as the countable disjoint union of elements of Q (see
the Lemma in Lecture #12).

Since the restriction of each of py and ps to Q is A, i.e., 1;(Q) = MNQ) for all @Q € Q (for
each i = 1,2), we have agreement of 17 and py on Q, by the countable additivity of the
measures.

Since p.(Q) = M(Q) for all @ € Q, we also have agreement of 1 and py with g, on Q,.

Next, for £ € Q having finite outer measure p.(E), we will show that p;(E) and ps(E)
agree with p.(E).

For every € > 0 there is by Proposition 10.1 (applied to p; as an extension of \) a set
E,. € Q, such that E C E, . and

1 (Eoe) < pe(E) + €.
These imply by the monotonicity of p; that
(E) < p(Eoe) < pe(E) + €.

We will prove the opposite inequality.

Since € > 0 is arbitrary, we obtain for all E € Q of finite outer measure that

1 (E) < pe(E).

Since F € Qy and E, . € Q, C Qq, we have E, . — E € Q.



The restriction of . to Qp is a measure because the restriction of u,. to A is a measure
and Qo C .A

Then, since p.(E) < 00, py = pte on Qp, and 1 (E, ) — pe(E) < €, we have
ﬂe(Ea,e - F) = ﬂe(EU,e) — pe(E) = M1<E0,e) — pe(E) < e
Since E C E, ., we have E,. = EU (E,. — E) as a disjoint union of elements of Q.

Since p. and pp are measures on Qy with p, = py on Q,, pi(F) < pe(F) for all F € Qy
satisfying . (F') < oo, and p.(E,. — E) < €, we have

Me(E) < Ne(EcrE) = Nl(EUE)
= (E) + w(Epe — E)
< wm(E)+ ,ue(EJ,e )
< ui(E)+e.

The arbitrariness of € implies that p.(E) < py (EF).
Thus for £ € Q, with finite outer measure we obtain u;(F) = p.(E).

Replacing pq1 with po in this argument results in po(E) = po(F) for all E € Qy with
finite outer measure.

Finally, we show that p;(E) = po(F) for any E € Q.

Since A is o-finite, there is a countably collection {@,} in Q such that p.(Q,) < oo for
each n, and

E= GQnmEa
n=1

where each ), N E is in Qg and has finite outer measure.
As done before, we may assume that the collection {Q,} is pairwise disjoint.

Since 1y and po agree on those elements of Qg of finite outer measure, we have

m(B) = m(QuNE)=> us(QuNE) = ux(E).

This shows that p; = ps on Qp. 0J

The lack of uniqueness of the extension for non-o-finite measures A is a homework prob-
lem.

12. The Lebesgue Measure of Sets in RY. The collection Q of %—closed dyadic
cubes, including the empty set, is a semialgebra and a sequential covering of R¥.

The Euclidean measure (or volume) A of the 3-closed dyadic cubes in RY is a o-finite
measure on Q, and hence A is finitely additive and countably subadditive.

The measure A on Q determines an outer measure p, on RV, called the Lebesgue outer
measure on RV,

Proposition 12.1. Let M be the o-algebra generated by the Euclidean measure A on
Q. Then M contains



(i) the -closed dyadic cubes Q,
(i) all open subsets of RY,
(iii) all closed subsets of RY and

(iv) all sets in RY of the form F,, G5, F,s, Gso, etc.

Proof. The collection of %—closed dyadic cubes Q and the Euclidean measure A\ on them
satisfy the assumptions of Proposition 9.1.

This implies that @ C M.

Since every open set in RY is a countable union of %—closed dyadic cubes, the open sets
are in M.

Since the o-algebra M is closed under complements, every closed subset is in M.

Since the o-algebra M is closed under countable unions and countable intersections, sets
of the type F,, Gs, etc., are in M. O

The restriction p of the Lebesgue outer measure p. to M is the Lebesgue measure in
RY and the sets in M are called the Lebesgue measurable sets in RY.

The Lebesgue measure p on M is an extension of the Euclidean measure A on Q, that is
1 extends the notion of volume from dyadic cubes to the sets in M.

Recall the the Borel o-algebra B is the smallest o-algebra containing the open sets.
Also, each element of the Borel o-algebra is called a Borel set.
The Borel sets include the sets of type F,, Gs, etc.

Corollary. (i) B ¢ M. (ii) Every finite or countable infinite subset of R has Lebesgue
measure 0.

Proof. (i) Because M is o-algebra containing the open sets and B is the smallest o-
algebra containing the open sets, we have B C M.

(ii) For z € RY, the singleton set {z} belongs to M because its complement is open.

Since a singleton set {z} belongs to %—closed dyadic cubes of arbitrarily small Euclidean
measure, we have p.({z}) =0, and so u({z}) = 0 since u is the restriction of p. to M.

A finite subset of RY is a disjoint union of singleton sets.

Since each singleton set has Lebesgue measure zero, their finite union has Lebesgue
measure zero by finite additivity.

A countably infinite subset of R is a disjoint union of singleton sets.

Since each singleton set has Lebesgue measure zero, their countable union has Lebesgue
measure zero by countable additivity. 0

Remark. We will see soon that there are Lebesgue measurable sets that are not Borel
sets, that is, the inclusion B C M is strict.

Homework Problem 14A. Let Qj be the smallest o-algebra containing the semialgebra
Q of %-closed dyadic cubes in RY. Prove that Qy is the Borel o-algebra B on RY.



