
Math 541 Lecture #14
II.11: More on Extensions from Semialgebras to σ-algebras

II.12: The Lebesgue Measure of Sets in RN , Part I

11. More on Extensions from semiaglebras to σ-algebras. We will develop a bit
more the theory on the extension of a measure λ on semialgebra and sequential covering
Q to a measure space {X,A, µ}.
Theorem 11.1. Every measure λ on a semialgebra Q (and sequential covering of X)
generates a measure space {X,A, µ} where A is a σ-algebra containing Q and µ is a
complete measure on A, which agrees with λ on Q. Moreover, if Q0 is the smallest
σ-algebra containing Q, then the restriction of µ to Q0 is an extension of λ to Q0, and
this extension is unique if λ is a σ-finite measure (i.e., there is a countable {Qn} in Q
such that X = ∪Qn and λ(Qn) <∞).

Proof. There only remains to show the uniqueness of the extension of λ to Q0 when λ is
σ-finite.

To this end, suppose µ1, µ2 are extensions of λ to Q0, and let µe be the outer measure
determined by λ on Q.

The elements of Qσ are elements of Q0, i.e., Qσ ⊂ Q0, because Q0 is the smallest σ-
algebra containing Q.

Every element of Qσ can be written as the countable disjoint union of elements of Q (see
the Lemma in Lecture #12).

Since the restriction of each of µ1 and µ2 to Q is λ, i.e., µi(Q) = λ(Q) for all Q ∈ Q (for
each i = 1, 2), we have agreement of µ1 and µ2 on Qσ by the countable additivity of the
measures.

Since µe(Q) = λ(Q) for all Q ∈ Q, we also have agreement of µ1 and µ2 with µe on Qσ.

Next, for E ∈ Q0 having finite outer measure µe(E), we will show that µ1(E) and µ2(E)
agree with µe(E).

For every ε > 0 there is by Proposition 10.1 (applied to µ1 as an extension of λ) a set
Eσ,ε ∈ Qσ such that E ⊂ Eσ,ε and

µ1(Eσ,ε) ≤ µe(E) + ε.

These imply by the monotonicity of µ1 that

µ1(E) ≤ µ1(Eσ,ε) ≤ µe(E) + ε.

We will prove the opposite inequality.

Since ε > 0 is arbitrary, we obtain for all E ∈ Q0 of finite outer measure that

µ1(E) ≤ µe(E).

Since E ∈ Q0 and Eσ,ε ∈ Qσ ⊂ Q0, we have Eσ,ε − E ∈ Q0.



The restriction of µe to Q0 is a measure because the restriction of µe to A is a measure
and Q0 ⊂ A.

Then, since µe(E) <∞, µ1 = µe on Qσ, and µ1(Eσ,ε)− µe(E) ≤ ε, we have

µe(Eσ,ε − E) = µe(Eσ,ε)− µe(E) = µ1(Eσ,ε)− µe(E) ≤ ε.

Since E ⊂ Eσ,ε, we have Eσε = E ∪ (Eσ,ε − E) as a disjoint union of elements of Q0.

Since µe and µ1 are measures on Q0 with µe = µ1 on Qσ, µ1(F ) ≤ µe(F ) for all F ∈ Q0

satisfying µe(F ) <∞, and µe(Eσ,ε − E) ≤ ε, we have

µe(E) ≤ µe(Eσ,ε) = µ1(Eσ,ε)

= µ1(E) + µ1(Eσ,ε − E)

≤ µ1(E) + µe(Eσ,ε − E)

≤ µ1(E) + ε.

The arbitrariness of ε implies that µe(E) ≤ µ1(E).

Thus for E ∈ Q0 with finite outer measure we obtain µ1(E) = µe(E).

Replacing µ1 with µ2 in this argument results in µ2(E) = µe(E) for all E ∈ Q0 with
finite outer measure.

Finally, we show that µ1(E) = µ2(E) for any E ∈ Q0.

Since λ is σ-finite, there is a countably collection {Qn} in Q such that µe(Qn) < ∞ for
each n, and

E =
∞⋃
n=1

Qn ∩ E,

where each Qn ∩ E is in Q0 and has finite outer measure.

As done before, we may assume that the collection {Qn} is pairwise disjoint.

Since µ1 and µ2 agree on those elements of Q0 of finite outer measure, we have

µ1(E) =
∞∑
n=1

µ1(Qn ∩ E) =
∞∑
n=1

µ2(Qn ∩ E) = µ2(E).

This shows that µ1 = µ2 on Q0. �

The lack of uniqueness of the extension for non-σ-finite measures λ is a homework prob-
lem.

12. The Lebesgue Measure of Sets in RN . The collection Q of 1
2
-closed dyadic

cubes, including the empty set, is a semialgebra and a sequential covering of RN .

The Euclidean measure (or volume) λ of the 1
2
-closed dyadic cubes in RN is a σ-finite

measure on Q, and hence λ is finitely additive and countably subadditive.

The measure λ on Q determines an outer measure µe on RN , called the Lebesgue outer
measure on RN .

Proposition 12.1. Let M be the σ-algebra generated by the Euclidean measure λ on
Q. Then M contains



(i) the 1
2
-closed dyadic cubes Q,

(ii) all open subsets of RN ,

(iii) all closed subsets of RN , and

(iv) all sets in RN of the form Fσ, Gδ, Fσδ, Gδσ, etc.

Proof. The collection of 1
2
-closed dyadic cubes Q and the Euclidean measure λ on them

satisfy the assumptions of Proposition 9.1.

This implies that Q ⊂M.

Since every open set in RN is a countable union of 1
2
-closed dyadic cubes, the open sets

are in M.

Since the σ-algebra M is closed under complements, every closed subset is in M.

Since the σ-algebraM is closed under countable unions and countable intersections, sets
of the type Fσ, Gδ, etc., are in M. �

The restriction µ of the Lebesgue outer measure µe to M is the Lebesgue measure in
RN , and the sets in M are called the Lebesgue measurable sets in RN .

The Lebesgue measure µ onM is an extension of the Euclidean measure λ on Q, that is
µ extends the notion of volume from dyadic cubes to the sets in M.

Recall the the Borel σ-algebra B is the smallest σ-algebra containing the open sets.

Also, each element of the Borel σ-algebra is called a Borel set.

The Borel sets include the sets of type Fσ, Gδ, etc.

Corollary. (i) B ⊂M. (ii) Every finite or countable infinite subset of RN has Lebesgue
measure 0.

Proof. (i) Because M is σ-algebra containing the open sets and B is the smallest σ-
algebra containing the open sets, we have B ⊂M.

(ii) For x ∈ RN , the singleton set {x} belongs to M because its complement is open.

Since a singleton set {x} belongs to 1
2
-closed dyadic cubes of arbitrarily small Euclidean

measure, we have µe({x}) = 0, and so µ({x}) = 0 since µ is the restriction of µe to M.

A finite subset of RN is a disjoint union of singleton sets.

Since each singleton set has Lebesgue measure zero, their finite union has Lebesgue
measure zero by finite additivity.

A countably infinite subset of RN is a disjoint union of singleton sets.

Since each singleton set has Lebesgue measure zero, their countable union has Lebesgue
measure zero by countable additivity. �

Remark. We will see soon that there are Lebesgue measurable sets that are not Borel
sets, that is, the inclusion B ⊂M is strict.

Homework Problem 14A. LetQ0 be the smallest σ-algebra containing the semialgebra
Q of 1

2
-closed dyadic cubes in RN . Prove that Q0 is the Borel σ-algebra B on RN .


