
Math 541 Lecture #15
II.12: The Lebesgue Measure of Sets in RN , Part II

§12.1: A Necessary and Sufficient Condition of Measurability. We will apply
the necessary and sufficient conditions we obtained before for the measurability of sets
to Lebesgue measure and subsets of RN .

Let µ be the Lebesgue measure in RN , and for any subset E of RN , define

µ′
e(E) = inf{µ(O) : O is open, E ⊂ O}.

This function µ′
e is a bit like the outer measure µe from which Lebesgue was generated,

except the class of sets over which the infimum is taken is different.

Lemma. The set function µ′
e satisfies µe(E) ≤ µ′

e(E) for all E ∈ P(RN).

Proof. Recall that

µe(E) = inf

{
∞∑
n=1

λ(Qn) : E ⊂
∞⋃
n=1

Qn, Qn ∈ Q

}
.

Since µ = λ on Q, we have

µe(E) = inf

{
∞∑
n=1

µ(Qn) : E ⊂
∞⋃
n=1

Qn, Qn ∈ Q

}
.

On the other hand, since every open set O is the pairwise disjoint union of 1
2
-closed

dyadic cubes {Qn} ⊂ Q, we have

µ′
e(E) = inf

{
µ(O) : E ⊂ O =

∞⋃
n=1

Qn, Qn ∈ Q

}

= inf

{
∞∑
n=1

µ(Qn) : E ⊂ O =
∞⋃
n=1

Qn, Qn ∈ Q

}

by countable additivity of µ.

The set over which the inf for µe(E) is taken contains the set over which the inf for µ′
e(E)

is taken.

Therefore µe(E) ≤ µ′
e(E). �

Note that every closed cube in RN (not just the dyadic cubes) and their interiors are
Lebesgue measurable because the closed cubes are closed subsets and the interiors are
open subsets.

Proposition 12.2. If a subset E of RN has finite outer measure, then µe(E) = µ′
e(E).

Proof. Suppose the outer measure of E is finite.

By observation (2), we need only show that µ′
e(E) ≤ µe(E).



For ε > 0, let {Qε,n} be a countable collection of 1
2
-closed dyadic cubes such that

E ⊂
∞⋃
n=1

Qε,n,
∞∑
n=1

µ(Qε,n) ≤ µe(E) + ε.

For each n there exists a closed cube Q′
ε,n (not necessarily dyadic) such that

Qε,n ⊂ Q̊′
ε,n, µ(Q̊′

ε,n −Qε,n) ≤ ε

2n
.

The union of the Q̊′
ε,n is open and contains E, so that

µ′
e(E) ≤ µ

(⋃
Q̊′
ε,n

)
≤
∑

µ(Q̊′
ε,n)

=
∑

µ
(
Qε,n ∪ (Q̊′

ε,n −Qε,n)
)

=
∑(

µ(Qε,n) + µ(Q̊′
ε,n −Qε,n)

)
≤ µe(E) + ε+

∞∑
n=1

ε

2n

≤ µe(E) + 2ε.

Since ε > 0 is arbitrary, we obtain µ′
e(E) ≤ µe(E). �

Proposition 12.3. A subset E of RN of finite outer measure is Lebesgue measurable
if and only if for every ε > 0 there exists an open set Eo,ε such that

E ⊂ Eo,ε and µe(Eo,ε − E) ≤ ε.

Moreover, any set E of finite outer measure is Lebesgue measurable if and only if there
is a set Eδ of type Gδ such that

E ⊂ Eδ and µe(Eδ − E) = 0.

Proof. Suppose a set E of finite outer measure is Lebesgue measurable.

Then for every ε > 0 there is, by Proposition 10.2, a set Eσ,ε in Qσ such that

E ⊂ Eσ,ε and µe(Eσ,ε − E) ≤ ε

2
.

Since Eσ,ε and E are Lebesgue measurable we have that Eσ,ε−E is Lebesgue measurable.

Since µ(E) = µe(E) <∞, we have

µe(Eσ,ε)− µe(E) = µ(Eσ,ε)− µ(E) = µ(Eσ,ε − E) = µe(Eσ,ε − E) ≤ ε

2
.

Thus µe(Eσ,ε) <∞, so that by Proposition 12.2 we have µe(Eσ,ε) = µ′
e(Eσ,ε).



Hence there is an open set Eo,ε such that Eσ,ε ⊂ Eo,ε and

µ(Eo,ε) ≤ µe(Eσ,ε) +
ε

2
.

These imply that E ⊂ Eo,ε and (by subtracting the finite µe(E) from both sides)

µ(Eo,ε)− µe(E) ≤ µe(Eσ,ε)− µe(E) +
ε

2
≤ ε.

Since E and Eo,ε are Lebesgue measurable with µ(E) = µe(E) <∞, we have

µe(Eo,ε − E) = µ(Eo,ε − E) = µ(Eo,ε)− µ(E) = µ(Eo,ε)− µe(E) ≤ ε.

Now for a set E of finite outer measure, suppose for every ε > 0 there exists an open Eo,ε
such that E ⊂ Eo,ε and

µe(Eo,ε − E) ≤ ε.

Since every open set is the countable union of 1
2
-closed dyadic cubes, we have Eo,ε ∈ Qσ.

Hence by Proposition 10.2, we have that E is Lebesgue measurable.

Now suppose that a set E of finite outer measure is Lebesgue measurable.

By the above argument, there is for each n ∈ N an open set Eo,1/n such that

E ⊂ Eo,1/n and µe(Eo,1/n) ≤ µe(E) +
1

n
.

Since E ⊂ ∩∞k=1Eo,1/k ⊂ Eo,1/n for all n, we have

µe(E) ≤ µe(∩Eo,1/k) ≤ µe(Eo,1/n) ≤ µe(E) +
1

n
.

For Eδ = ∩Eo,1/n, we obtain as n→∞ that

µe(E)− µe(Eδ) = 0.

Since E and Eδ are Lebesgue measurable with µ(E) = µe(E) <∞ we have

µe(Eδ − E) = µ(Eδ − E) = µ(Eδ)− µ(E) = µe(Eδ)− µe(E) = 0.

Finally suppose for a set E of finite outer measure there exists a set Eδ of type Gδ such
that

E ⊂ Eδ and µe(Eδ − E) = 0.

Since each open set is a countable union of 1
2
-closed dyadic cubes in Q, the set Eδ belongs

to Qσδ.
Thus by Proposition 10.3, the set E is Lebesgue measurable. �


