Math 541 Lecture #15 II.12: The Lebesgue Measure of Sets in \mathbb{R}^N , Part II

§12.1: A Necessary and Sufficient Condition of Measurability. We will apply the necessary and sufficient conditions we obtained before for the measurability of sets to Lebesgue measure and subsets of \mathbb{R}^N .

Let μ be the Lebesgue measure in \mathbb{R}^N , and for any subset E of \mathbb{R}^N , define

$$\mu'_e(E) = \inf\{\mu(\mathcal{O}) : \mathcal{O} \text{ is open}, E \subset \mathcal{O}\}.$$

This function μ'_e is a bit like the outer measure μ_e from which Lebesgue was generated, except the class of sets over which the infimum is taken is different.

Lemma. The set function μ'_e satisfies $\mu_e(E) \leq \mu'_e(E)$ for all $E \in \mathcal{P}(\mathbb{R}^N)$. Proof. Recall that

$$\mu_e(E) = \inf \left\{ \sum_{n=1}^{\infty} \lambda(Q_n) : E \subset \bigcup_{n=1}^{\infty} Q_n, Q_n \in \mathcal{Q} \right\}.$$

Since $\mu = \lambda$ on \mathcal{Q} , we have

$$\mu_e(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(Q_n) : E \subset \bigcup_{n=1}^{\infty} Q_n, Q_n \in \mathcal{Q} \right\}.$$

On the other hand, since every open set \mathcal{O} is the pairwise disjoint union of $\frac{1}{2}$ -closed dyadic cubes $\{Q_n\} \subset \mathcal{Q}$, we have

$$\mu'_{e}(E) = \inf \left\{ \mu(\mathcal{O}) : E \subset \mathcal{O} = \bigcup_{n=1}^{\infty} Q_{n}, Q_{n} \in \mathcal{Q} \right\}$$
$$= \inf \left\{ \sum_{n=1}^{\infty} \mu(Q_{n}) : E \subset O = \bigcup_{n=1}^{\infty} Q_{n}, Q_{n} \in \mathcal{Q} \right\}$$

by countable additivity of μ .

The set over which the inf for $\mu_e(E)$ is taken contains the set over which the inf for $\mu'_e(E)$ is taken.

Therefore $\mu_e(E) \le \mu'_e(E)$.

Note that every closed cube in \mathbb{R}^N (not just the dyadic cubes) and their interiors are Lebesgue measurable because the closed cubes are closed subsets and the interiors are open subsets.

Proposition 12.2. If a subset E of \mathbb{R}^N has finite outer measure, then $\mu_e(E) = \mu'_e(E)$. Proof. Suppose the outer measure of E is finite.

By observation (2), we need only show that $\mu'_e(E) \leq \mu_e(E)$.

For $\epsilon > 0$, let $\{\mathcal{Q}_{\epsilon,n}\}$ be a countable collection of $\frac{1}{2}$ -closed dyadic cubes such that

$$E \subset \bigcup_{n=1}^{\infty} \mathcal{Q}_{\epsilon,n}, \quad \sum_{n=1}^{\infty} \mu(\mathcal{Q}_{\epsilon,n}) \leq \mu_e(E) + \epsilon.$$

For each n there exists a closed cube $\mathcal{Q}'_{\epsilon,n}$ (not necessarily dyadic) such that

$$\mathcal{Q}_{\epsilon,n} \subset \mathring{\mathcal{Q}}'_{\epsilon,n}, \ \mu(\mathring{\mathcal{Q}}'_{\epsilon,n} - \mathcal{Q}_{\epsilon,n}) \leq \frac{\epsilon}{2^n}.$$

The union of the $\mathcal{Q}'_{\epsilon,n}$ is open and contains E, so that

$$\mu'_{e}(E) \leq \mu\left(\bigcup \mathring{\mathcal{Q}}'_{\epsilon,n}\right) \leq \sum \mu(\mathring{\mathcal{Q}}'_{\epsilon,n})$$
$$= \sum \mu\left(\mathcal{Q}_{\epsilon,n} \cup (\mathring{\mathcal{Q}}'_{\epsilon,n} - \mathcal{Q}_{\epsilon,n})\right)$$
$$= \sum \left(\mu(\mathcal{Q}_{\epsilon,n}) + \mu(\mathring{\mathcal{Q}}'_{\epsilon,n} - \mathcal{Q}_{\epsilon,n})\right)$$
$$\leq \mu_{e}(E) + \epsilon + \sum_{n=1}^{\infty} \frac{\epsilon}{2^{n}}$$
$$\leq \mu_{e}(E) + 2\epsilon.$$

Since $\epsilon > 0$ is arbitrary, we obtain $\mu'_e(E) \leq \mu_e(E)$.

Proposition 12.3. A subset E of \mathbb{R}^N of finite outer measure is Lebesgue measurable if and only if for every $\epsilon > 0$ there exists an open set $E_{o,\epsilon}$ such that

$$E \subset E_{o,\epsilon}$$
 and $\mu_e(E_{o,\epsilon} - E) \leq \epsilon$

Moreover, any set E of finite outer measure is Lebesgue measurable if and only if there is a set E_{δ} of type \mathcal{G}_{δ} such that

$$E \subset E_{\delta}$$
 and $\mu_e(E_{\delta} - E) = 0$.

Proof. Suppose a set E of finite outer measure is Lebesgue measurable.

Then for every $\epsilon > 0$ there is, by Proposition 10.2, a set $E_{\sigma,\epsilon}$ in \mathcal{Q}_{σ} such that

$$E \subset E_{\sigma,\epsilon}$$
 and $\mu_e(E_{\sigma,\epsilon} - E) \leq \frac{\epsilon}{2}$.

Since $E_{\sigma,\epsilon}$ and E are Lebesgue measurable we have that $E_{\sigma,\epsilon} - E$ is Lebesgue measurable. Since $\mu(E) = \mu_e(E) < \infty$, we have

$$\mu_e(E_{\sigma,\epsilon}) - \mu_e(E) = \mu(E_{\sigma,\epsilon}) - \mu(E) = \mu(E_{\sigma,\epsilon} - E) = \mu_e(E_{\sigma,\epsilon} - E) \le \frac{\epsilon}{2}.$$

Thus $\mu_e(E_{\sigma,\epsilon}) < \infty$, so that by Proposition 12.2 we have $\mu_e(E_{\sigma,\epsilon}) = \mu'_e(E_{\sigma,\epsilon})$.

Hence there is an open set $E_{o,\epsilon}$ such that $E_{\sigma,\epsilon} \subset E_{o,\epsilon}$ and

$$\mu(E_{o,\epsilon}) \le \mu_e(E_{\sigma,\epsilon}) + \frac{\epsilon}{2}$$

These imply that $E \subset E_{o,\epsilon}$ and (by subtracting the finite $\mu_e(E)$ from both sides)

$$\mu(E_{o,\epsilon}) - \mu_e(E) \le \mu_e(E_{\sigma,\epsilon}) - \mu_e(E) + \frac{\epsilon}{2} \le \epsilon.$$

Since E and $E_{o,\epsilon}$ are Lebesgue measurable with $\mu(E) = \mu_e(E) < \infty$, we have

$$\mu_e(E_{o,\epsilon} - E) = \mu(E_{o,\epsilon} - E) = \mu(E_{o,\epsilon}) - \mu(E) = \mu(E_{o,\epsilon}) - \mu_e(E) \le \epsilon.$$

Now for a set E of finite outer measure, suppose for every $\epsilon > 0$ there exists an open $E_{o,\epsilon}$ such that $E \subset E_{o,\epsilon}$ and

$$\mu_e(E_{o,\epsilon} - E) \le \epsilon.$$

Since every open set is the countable union of $\frac{1}{2}$ -closed dyadic cubes, we have $E_{o,\epsilon} \in \mathcal{Q}_{\sigma}$. Hence by Proposition 10.2, we have that E is Lebesgue measurable.

Now suppose that a set E of finite outer measure is Lebesgue measurable.

By the above argument, there is for each $n \in \mathbb{N}$ an open set $E_{o,1/n}$ such that

$$E \subset E_{o,1/n} \text{ and } \mu_e(E_{o,1/n}) \le \mu_e(E) + \frac{1}{n}.$$

Since $E \subset \bigcap_{k=1}^{\infty} E_{o,1/k} \subset E_{o,1/n}$ for all n, we have

$$\mu_e(E) \le \mu_e(\cap E_{o,1/k}) \le \mu_e(E_{o,1/n}) \le \mu_e(E) + \frac{1}{n}$$

For $E_{\delta} = \cap E_{o,1/n}$, we obtain as $n \to \infty$ that

$$\mu_e(E) - \mu_e(E_\delta) = 0.$$

Since E and E_{δ} are Lebesgue measurable with $\mu(E) = \mu_e(E) < \infty$ we have

$$\mu_e(E_{\delta} - E) = \mu(E_{\delta} - E) = \mu(E_{\delta}) - \mu(E) = \mu_e(E_{\delta}) - \mu_e(E) = 0.$$

Finally suppose for a set E of finite outer measure there exists a set E_{δ} of type \mathcal{G}_{δ} such that

$$E \subset E_{\delta}$$
 and $\mu_e(E_{\delta} - E) = 0.$

Since each open set is a countable union of $\frac{1}{2}$ -closed dyadic cubes in \mathcal{Q} , the set E_{δ} belongs to $\mathcal{Q}_{\sigma\delta}$.

Thus by Proposition 10.3, the set E is Lebesgue measurable.