Math 541 Lecture #16
I1.12: The Lebesgue Measure of Sets in RV, Part III

12: The Lebesgue measure of sets in RY. We continue with characterizing the
Lebesgue measurable sets in RV,

Proposition 12.4. A bounded set £ C R” is Lebesgue measurable if and only if for
every € > 0 there exists a closed set £, . such that

E..CE and p.(E — E..) <e.

Moreover, a bounded set E is Lebesgue measurable if and only if there exists a set E, of
type JF, type such that
E, C F and p.(F — E,) = 0.
Proof. Suppose that a bounded F is Lebesgue measurable.
Then there is a closed cube () such that £ C ) and () — E has finite outer measure.

Thus for every € > 0 there is by Proposition 12.3 the existence of an open set E, . such
that
(Q— E) C B, and pio(E,. — (Q — E)) < e.

The set E.. = £S5, NQ is closed (bounded and hence compact) and satisfies
E-E.=FE—(E, NQ)=EN(E, NQ)*
=EN(E,UQ°)=(ENE,)U(ENQ°)
=(ENE, )Ub=ENE,,.

Since

E,e—(Q—-E)=E,.N(Q—E)=E,.N(QNE)*
=FE,N(QUE)=(E,.NQ°)U(E,.NE)

we obtain that

E-E.CE.—(Q—-E).

Thus by monotonicity of the outer measure we have
pe(E — Eee) < pre(Eoe — (Q — F)) <.

Now suppose that a bounded set E has for every € > 0 the existence of a closed set £,
such that .

E..CFE and p.(E - E..) < 3
By Proposition 12.2, we have p.(E — E..) = u.(E — E..),
set F,. (which is Lebesgue measurable) such that

and so there exists an open

E — Ec,e C Eo,e and ,U(Eo,e) = ,ue(Eo,e) < /Jle(E - Ec,e) + %



Since p.(E — E..) < €/2 we obtain pu.(E,.) < €.

Since E,. — (F — E..) C E,., we have by monotonicity of the outer measure that

pe(Eoe — (B — E)) < pie(Eo,) < e.
This shows by Proposition 12.3 that &' — E,. . is Lebesgue measurable.
Since E.. C E we have E = (E — E..) U E, . (disjointly).
Since I/ — E. . and E, . are Lebesgue measurable, their union E is also.
Now suppose that a bounded set F is Lebesgue measurable.

By the argument above there is for each n € N a closed set E./, such that

1
Ecim CEand po(E — Ecyjn) < —.
n

Since E and E./, are Lebesgue measurable, so is £ — E. /.

Since F is a bounded subset, it has finite outer measure, and hence finite Lebesgue
measure, so that p(E.;/,) < 0o, and hence

Ne(E - Ec,l/n) = ,U(E - Ec,l/n) = M(E) - ,U(EC,I/n) = Ne(E) - ,Ue(EC,l/n)-
We obtain

S|

> pe(E — Ecim) = pe(E) = pte(Eca/m).
Rewritten, this is

el Eeajo) > 1e(B) — ~
The set F, = UE, 1, is of type F, and satisfies E.;/, C £, C E for all n.
Thus by the monotonicity of u. we have for all n that

1
= 4 1e(B) £ pre(Bejn) < pie(Ey) < 1e(B).

This implies by the Squeeze Theorem that p.(F) = p.(E,) as n — oo.

Since E and E, are Lebesgue measurable with pu(FE) < oo and hence u(E,) < oo, we
have

pe(E — Ey) = u(E — Ey) = pu(E) — i(Ey) = pe(E) — pe(Es) = 0.
Finally, suppose for a bounded set E that there exists a set E, of type F, such that
E, C F and p.(E — E,) = 0.
Since F is bounded, the set £ — FE, has finite outer measure.
By Proposition 12.3, there exists a set Ej of type G5 that E — E, C Es and

o Es — (E — E,)) =0,

Since each open set is the countable union of %—closed dyadic cubes, the set Es belongs
to Qys.
The set ¥ — E, is then Lebesgue measurable by Proposition 10.3.
Since E, C E we have F = (E — E,) U E, (disjointly).

Since F, is Lebesgue measurable, we arrive at F being Lebesgue measurable. 0



