
Math 541 Lecture #16
II.12: The Lebesgue Measure of Sets in RN , Part III

12: The Lebesgue measure of sets in RN . We continue with characterizing the
Lebesgue measurable sets in RN .

Proposition 12.4. A bounded set E ⊂ RN is Lebesgue measurable if and only if for
every ε > 0 there exists a closed set Ec,ε such that

Ec,ε ⊂ E and µe(E − Ec,ε) ≤ ε.

Moreover, a bounded set E is Lebesgue measurable if and only if there exists a set Eσ of
type Fσ type such that

Eσ ⊂ E and µe(E − Eσ) = 0.

Proof. Suppose that a bounded E is Lebesgue measurable.

Then there is a closed cube Q such that E ⊂ Q and Q− E has finite outer measure.

Thus for every ε > 0 there is by Proposition 12.3 the existence of an open set Eo,ε such
that

(Q− E) ⊂ Eo,ε and µe(Eo,ε − (Q− E)) ≤ ε.

The set Ec,ε = Ec
o,ε ∩Q is closed (bounded and hence compact) and satisfies

E − Ec,ε = E − (Ec
o,ε ∩Q) = E ∩ (Ec

o,ε ∩Q)c

= E ∩ (Eo,ε ∪Qc) = (E ∩ Eo,ε) ∪ (E ∩Qc)

= (E ∩ Eo,ε) ∪ ∅ = E ∩ Eo,ε.

Since

Eo,ε − (Q− E) = Eo,ε ∩ (Q− E)c = Eo,ε ∩ (Q ∩ Ec)c

= Eo,ε ∩ (Qc ∪ E) = (Eo,ε ∩Qc) ∪ (Eo,ε ∩ E)

we obtain that
E − Ec,ε ⊂ E0,ε − (Q− E).

Thus by monotonicity of the outer measure we have

µe(E − Ec,ε) ≤ µe(Eo,ε − (Q− E)) ≤ ε.

Now suppose that a bounded set E has for every ε > 0 the existence of a closed set Ec,ε
such that

Ec,ε ⊂ E and µe(E − Ec,ε) ≤
ε

2
.

By Proposition 12.2, we have µe(E − Ec,ε) = µ′
e(E − Ec,ε), and so there exists an open

set Eo,ε (which is Lebesgue measurable) such that

E − Ec,ε ⊂ Eo,ε and µ(Eo,ε) = µe(Eo,ε) ≤ µe(E − Ec,ε) +
ε

2
.



Since µe(E − Ec,ε) ≤ ε/2 we obtain µe(Eo,ε) ≤ ε.

Since Eo,ε − (E − Ec,ε) ⊂ Eo,ε, we have by monotonicity of the outer measure that

µe(Eo,ε − (E − Ec,ε)) ≤ µe(Eo,ε) ≤ ε.

This shows by Proposition 12.3 that E − Ec,ε is Lebesgue measurable.

Since Ec,ε ⊂ E we have E = (E − Ec,ε) ∪ Ec,ε (disjointly).

Since E − Ec,ε and Ec,ε are Lebesgue measurable, their union E is also.

Now suppose that a bounded set E is Lebesgue measurable.

By the argument above there is for each n ∈ N a closed set Ec,1/n such that

Ec,1/n ⊂ E and µe(E − Ec,1/n) ≤ 1

n
.

Since E and Ec,1/n are Lebesgue measurable, so is E − Ec,1/n.

Since E is a bounded subset, it has finite outer measure, and hence finite Lebesgue
measure, so that µ(Ec,1/n) <∞, and hence

µe(E − Ec,1/n) = µ(E − Ec,1/n) = µ(E)− µ(Ec,1/n) = µe(E)− µe(Ec,1/n).

We obtain
1

n
≥ µe(E − Ec,1/n) = µe(E)− µe(Ec,1/n).

Rewritten, this is

µe(Ec,1/n) ≥ µe(E)− 1

n
.

The set Eσ = ∪Ec,1/n is of type Fσ and satisfies Ec,1/n ⊂ Eσ ⊂ E for all n.

Thus by the monotonicity of µe we have for all n that

− 1

n
+ µe(E) ≤ µe(Ec,1/n) ≤ µe(Eσ) ≤ µe(E).

This implies by the Squeeze Theorem that µe(E) = µe(Eσ) as n→∞.

Since E and Eσ are Lebesgue measurable with µ(E) < ∞ and hence µ(Eσ) < ∞, we
have

µe(E − Eσ) = µ(E − Eσ) = µ(E)− µ(Eσ) = µe(E)− µe(Eσ) = 0.

Finally, suppose for a bounded set E that there exists a set Eσ of type Fσ such that
Eσ ⊂ E and µe(E − Eσ) = 0.

Since E is bounded, the set E − Eσ has finite outer measure.

By Proposition 12.3, there exists a set Eδ of type Gδ that E − Eσ ⊂ Eδ and

µe(Eδ − (E − Eσ)) = 0.

Since each open set is the countable union of 1
2
-closed dyadic cubes, the set Eδ belongs

to Qσδ.
The set E − Eσ is then Lebesgue measurable by Proposition 10.3.

Since Eσ ⊂ E we have E = (E − Eσ) ∪ Eσ (disjointly).

Since Eσ is Lebesgue measurable, we arrive at E being Lebesgue measurable. �


