Math 541 Lecture #16 II.12: The Lebesgue Measure of Sets in \mathbb{R}^N , Part III

12: The Lebesgue measure of sets in \mathbb{R}^N . We continue with characterizing the Lebesgue measurable sets in \mathbb{R}^N .

Proposition 12.4. A bounded set $E \subset \mathbb{R}^N$ is Lebesgue measurable if and only if for every $\epsilon > 0$ there exists a closed set $E_{c,\epsilon}$ such that

$$E_{c,\epsilon} \subset E \text{ and } \mu_e(E - E_{c,\epsilon}) \leq \epsilon.$$

Moreover, a bounded set E is Lebesgue measurable if and only if there exists a set E_{σ} of type \mathcal{F}_{σ} type such that

$$E_{\sigma} \subset E$$
 and $\mu_e(E - E_{\sigma}) = 0.$

Proof. Suppose that a bounded E is Lebesgue measurable.

Then there is a closed cube Q such that $E \subset Q$ and Q - E has finite outer measure.

Thus for every $\epsilon > 0$ there is by Proposition 12.3 the existence of an open set $E_{o,\epsilon}$ such that

$$(Q-E) \subset E_{o,\epsilon}$$
 and $\mu_e(E_{o,\epsilon} - (Q-E)) \le \epsilon$.

The set $E_{c,\epsilon} = E_{o,\epsilon}^c \cap Q$ is closed (bounded and hence compact) and satisfies

$$E - E_{c,\epsilon} = E - (E_{o,\epsilon}^c \cap Q) = E \cap (E_{o,\epsilon}^c \cap Q)^c$$
$$= E \cap (E_{o,\epsilon} \cup Q^c) = (E \cap E_{o,\epsilon}) \cup (E \cap Q^c)$$
$$= (E \cap E_{o,\epsilon}) \cup \emptyset = E \cap E_{o,\epsilon}.$$

Since

$$E_{o,\epsilon} - (Q - E) = E_{o,\epsilon} \cap (Q - E)^c = E_{o,\epsilon} \cap (Q \cap E^c)^c$$
$$= E_{o,\epsilon} \cap (Q^c \cup E) = (E_{o,\epsilon} \cap Q^c) \cup (E_{o,\epsilon} \cap E)$$

we obtain that

$$E - E_{c,\epsilon} \subset E_{0,\epsilon} - (Q - E).$$

Thus by monotonicity of the outer measure we have

$$\mu_e(E - E_{c,\epsilon}) \le \mu_e(E_{o,\epsilon} - (Q - E)) \le \epsilon.$$

Now suppose that a bounded set E has for every $\epsilon>0$ the existence of a closed set $E_{c,\epsilon}$ such that

$$E_{c,\epsilon} \subset E \text{ and } \mu_e(E - E_{c,\epsilon}) \leq \frac{\epsilon}{2}.$$

By Proposition 12.2, we have $\mu_e(E - E_{c,\epsilon}) = \mu'_e(E - E_{c,\epsilon})$, and so there exists an open set $E_{o,\epsilon}$ (which is Lebesgue measurable) such that

$$E - E_{c,\epsilon} \subset E_{o,\epsilon}$$
 and $\mu(E_{o,\epsilon}) = \mu_e(E_{o,\epsilon}) \le \mu_e(E - E_{c,\epsilon}) + \frac{\epsilon}{2}$.

Since $\mu_e(E - E_{c,\epsilon}) \leq \epsilon/2$ we obtain $\mu_e(E_{o,\epsilon}) \leq \epsilon$.

Since $E_{o,\epsilon} - (E - E_{c,\epsilon}) \subset E_{o,\epsilon}$, we have by monotonicity of the outer measure that $\mu_e(E_{o,\epsilon} - (E - E_{c,\epsilon})) \leq \mu_e(E_{o,\epsilon}) \leq \epsilon.$

This shows by Proposition 12.3 that $E - E_{c,\epsilon}$ is Lebesgue measurable.

Since $E_{c,\epsilon} \subset E$ we have $E = (E - E_{c,\epsilon}) \cup E_{c,\epsilon}$ (disjointly).

Since $E - E_{c,\epsilon}$ and $E_{c,\epsilon}$ are Lebesgue measurable, their union E is also.

Now suppose that a bounded set E is Lebesgue measurable.

By the argument above there is for each $n \in \mathbb{N}$ a closed set $E_{c,1/n}$ such that

$$E_{c,1/n} \subset E \text{ and } \mu_e(E - E_{c,1/n}) \le \frac{1}{n}.$$

Since E and $E_{c,1/n}$ are Lebesgue measurable, so is $E - E_{c,1/n}$.

Since E is a bounded subset, it has finite outer measure, and hence finite Lebesgue measure, so that $\mu(E_{c,1/n}) < \infty$, and hence

$$\mu_e(E - E_{c,1/n}) = \mu(E - E_{c,1/n}) = \mu(E) - \mu(E_{c,1/n}) = \mu_e(E) - \mu_e(E_{c,1/n}).$$

We obtain

$$\frac{1}{n} \ge \mu_e(E - E_{c,1/n}) = \mu_e(E) - \mu_e(E_{c,1/n}).$$

Rewritten, this is

$$\mu_e(E_{c,1/n}) \ge \mu_e(E) - \frac{1}{n}.$$

The set $E_{\sigma} = \bigcup E_{c,1/n}$ is of type \mathcal{F}_{σ} and satisfies $E_{c,1/n} \subset E_{\sigma} \subset E$ for all n. Thus by the monotonicity of μ_e we have for all n that

$$-\frac{1}{n} + \mu_e(E) \le \mu_e(E_{c,1/n}) \le \mu_e(E_{\sigma}) \le \mu_e(E).$$

This implies by the Squeeze Theorem that $\mu_e(E) = \mu_e(E_{\sigma})$ as $n \to \infty$.

Since E and E_{σ} are Lebesgue measurable with $\mu(E) < \infty$ and hence $\mu(E_{\sigma}) < \infty$, we have

$$\mu_e(E - E_{\sigma}) = \mu(E - E_{\sigma}) = \mu(E) - \mu(E_{\sigma}) = \mu_e(E) - \mu_e(E_{\sigma}) = 0.$$

Finally, suppose for a bounded set E that there exists a set E_{σ} of type \mathcal{F}_{σ} such that $E_{\sigma} \subset E$ and $\mu_e(E - E_{\sigma}) = 0$.

Since E is bounded, the set $E - E_{\sigma}$ has finite outer measure.

By Proposition 12.3, there exists a set E_{δ} of type \mathcal{G}_{δ} that $E - E_{\sigma} \subset E_{\delta}$ and

$$\mu_e(E_\delta - (E - E_\sigma)) = 0.$$

Since each open set is the countable union of $\frac{1}{2}$ -closed dyadic cubes, the set E_{δ} belongs to $\mathcal{Q}_{\sigma\delta}$.

The set $E - E_{\sigma}$ is then Lebesgue measurable by Proposition 10.3.

Since $E_{\sigma} \subset E$ we have $E = (E - E_{\sigma}) \cup E_{\sigma}$ (disjointly).

Since E_{σ} is Lebesgue measurable, we arrive at E being Lebesgue measurable.