
Math 541 Lecture #17
II.13: A Nonmeasurable Set, Part I

13: Existence of Nonmeasurable Subset of [0, 1). We exhibit the existence of a
subset of the interval [0, 1) which is not Lebesgue measurable.

Define • : [0, 1)× [0, 1)→ [0, 1) by

x • y =

{
x+ y if x+ y < 1,

x+ y − 1 if x+ y ≥ 1.

[The set [0, 1) with this binary operation is isomorphic to the group S1.]

For a subset E of [0, 1) and y ∈ [0, 1) define

E • y = {x • y : x ∈ E}.

Lemma. If A is a Lebesgue measurable subset of [0, 1) and y ∈ [0, 1), then A • y is
Lebesgue measurable and µ(A • y) = µ(A).

Homework Problem 17A. Give a proof of this Lemma.

We define an equivalence relation ∼ in [0, 1) by

x ∼ y if x− y ∈ Q.

If E is an equivalence class for this equivalence relation, then two elements of E differ by
a rational number.

The set Q ∩ [0, 1) is one such equivalence class.

Using the Axiom of Choice, we select a subset E of [0, 1) that contains one and only one
element of each of the equivalence classes.

We will show that E is not Lebesgue measurable.

Two distinct elements of E have the property that they are not equivalent, i.e., they do
not differ by a rational number.

Set r0 = 0 and let rn be an enumeration of the elements of Q ∩ (0, 1).

For each n = 0, 1, 2, 3, . . . , form the sets

En = E • rn.

Claim 1. The sets {En} are pairwise disjoint.

Suppose for n,m that En ∩ Em 6= ∅, and let x ∈ En ∩ Em.

Then there are elements xn, xm ∈ E for which xn • rn = xm • rm.

There are four similar cases to consider depending on values of xn + rn and xm + rm.

If xn + rn < 1 and xm + rm < 1, then xn • rn = xm • rm implies

xn + rn = xm + rm.



If xn + rn ≥ 1 and xm + rm < 1, then xn • rn = xm • rm implies

xn + rn − 1 = xm + rm.

If xn + rm < 1 and xm + rm ≥ 1, then xn • rn = xm • rm implies

xn + rn = xm + rm − 1.

If xn + rm ≥ 1 and xm + rm ≥ 1, then xn • rn = xm • rm implies

xn + rn − 1 = xm + rm − 1.

In all four cases we get xn − xm ∈ Q.

But no two distinct elements of E differ by a rational number.

So xn = xm, and the equation xn • rn = xm • rm gives four cases (as above) of

rn = rm,

rn − 1 = rm,

rn = rm − 1,

rn = rm.

In the two middle cases, since rn < 1 and rm < 1 we have rm = rn − 1 < 0 or rn =
rm − 1 < 0 both of which are impossible, so that rn = rm.

Hence n = m so that En = Em, giving the Claim.

Claim 2. Each element of [0, 1) belongs to En for some n.

Every x ∈ [0, 1) belongs to some equivalence class, so there exists y ∈ E such that
x− y ∈ Q.

If x− y ≥ 0, then x = y + rn for some rn, and hence x ∈ En.

If x − y < 0, then since x, y ∈ [0, 1) there holds −1 < x − y, so that for some rn with
n ≥ 1 (i.e., rn 6= 0) we have x− y = −rn; this means

y + (1− rn) = (y − rn) + 1 = x+ 1 ≥ 1,

and hence
x = y − rn = y + (1− rn)− 1 = y • (1− rn).

Since rn 6= 0, there exists m ∈ N such that 1− rn = rm.

Thus x = y • rm and so x ∈ Em.

In either case we have x ∈ En for some n, giving the Claim.

By Claim 2 we have

[0, 1) =
⋃

En.

If E were Lebesgue measurable, then by the Lemma, each En = E•rn would be Lebesgue
measurable and satisfy µ(En) = µ(E • rn) = µ(E).



By Claim 1, the sets {En} are pairwise disjoint, so by countable additivity we have

µ([0, 1)) =
∞∑
n=0

µ(En) =
∞∑
n=0

µ(E).

The value of
∑
µ(E) is either 0 or ∞.

But the value of µ([0, 1)) is 1 because in terms of the Lebesgue measurable singleton sets
and 1

2
-closed dyadic intervals we have

[0, 1) =
(
{0} ∪ (0, 1/2] ∪ (1/2, 1]

)
− {1},

whence [0, 1) ∈M and as the Lebesgue measure of singleton sets is zero,

µ([0, 1)) = µ({0}) + µ((0, 1/2]) + µ((1/2, 1])− µ({1})
= λ((0, 1/2]) + λ((1/2, 1])

= 1/2 + 1/2 = 1.

This contradiction implies that E is not Lebesgue measurable.

The set E is called a Vitali nonmeasurable set.

There are many ways to select the elements that constitute E, and hence there are many
nonmeasurable subsets of [0, 1).


