Math 541 Lecture #17 II.13: A Nonmeasurable Set, Part I

13: Existence of Nonmeasurable Subset of [0,1). We exhibit the existence of a subset of the interval [0,1) which is not Lebesgue measurable.

Define $\bullet : [0, 1) \times [0, 1) \to [0, 1)$ by

$$x \bullet y = \begin{cases} x+y & \text{if } x+y < 1, \\ x+y-1 & \text{if } x+y \ge 1. \end{cases}$$

[The set [0, 1) with this binary operation is isomorphic to the group S^1 .] For a subset E of [0, 1) and $y \in [0, 1)$ define

$$E \bullet y = \{x \bullet y : x \in E\}$$

Lemma. If A is a Lebesgue measurable subset of [0, 1) and $y \in [0, 1)$, then $A \bullet y$ is Lebesgue measurable and $\mu(A \bullet y) = \mu(A)$.

Homework Problem 17A. Give a proof of this Lemma.

We define an equivalence relation \sim in [0, 1) by

$$x \sim y \text{ if } x - y \in \mathbb{Q}.$$

If \mathcal{E} is an equivalence class for this equivalence relation, then two elements of \mathcal{E} differ by a rational number.

The set $\mathbb{Q} \cap [0, 1)$ is one such equivalence class.

Using the Axiom of Choice, we select a subset E of [0, 1) that contains one and only one element of each of the equivalence classes.

We will show that E is not Lebesgue measurable.

Two distinct elements of E have the property that they are not equivalent, i.e., they do not differ by a rational number.

Set $r_0 = 0$ and let r_n be an enumeration of the elements of $\mathbb{Q} \cap (0, 1)$.

For each $n = 0, 1, 2, 3, \ldots$, form the sets

$$E_n = E \bullet r_n$$

<u>Claim 1</u>. The sets $\{E_n\}$ are pairwise disjoint.

Suppose for n, m that $E_n \cap E_m \neq \emptyset$, and let $x \in E_n \cap E_m$.

Then there are elements $x_n, x_m \in E$ for which $x_n \bullet r_n = x_m \bullet r_m$.

There are four similar cases to consider depending on values of $x_n + r_n$ and $x_m + r_m$.

If $x_n + r_n < 1$ and $x_m + r_m < 1$, then $x_n \bullet r_n = x_m \bullet r_m$ implies

$$x_n + r_n = x_m + r_m.$$

If $x_n + r_n \ge 1$ and $x_m + r_m < 1$, then $x_n \bullet r_n = x_m \bullet r_m$ implies

$$x_n + r_n - 1 = x_m + r_m$$

If $x_n + r_m < 1$ and $x_m + r_m \ge 1$, then $x_n \bullet r_n = x_m \bullet r_m$ implies

$$x_n + r_n = x_m + r_m - 1$$

If $x_n + r_m \ge 1$ and $x_m + r_m \ge 1$, then $x_n \bullet r_n = x_m \bullet r_m$ implies

$$x_n + r_n - 1 = x_m + r_m - 1.$$

In all four cases we get $x_n - x_m \in \mathbb{Q}$.

But no two distinct elements of E differ by a rational number.

So $x_n = x_m$, and the equation $x_n \bullet r_n = x_m \bullet r_m$ gives four cases (as above) of

$$r_n = r_m,$$

$$r_n - 1 = r_m,$$

$$r_n = r_m - 1$$

$$r_n = r_m.$$

In the two middle cases, since $r_n < 1$ and $r_m < 1$ we have $r_m = r_n - 1 < 0$ or $r_n = r_m - 1 < 0$ both of which are impossible, so that $r_n = r_m$.

Hence n = m so that $E_n = E_m$, giving the Claim.

<u>Claim 2</u>. Each element of [0, 1) belongs to E_n for some n.

Every $x \in [0,1)$ belongs to some equivalence class, so there exists $y \in E$ such that $x - y \in \mathbb{Q}$.

If $x - y \ge 0$, then $x = y + r_n$ for some r_n , and hence $x \in E_n$.

If x - y < 0, then since $x, y \in [0, 1)$ there holds -1 < x - y, so that for some r_n with $n \ge 1$ (i.e., $r_n \ne 0$) we have $x - y = -r_n$; this means

$$y + (1 - r_n) = (y - r_n) + 1 = x + 1 \ge 1,$$

and hence

$$x = y - r_n = y + (1 - r_n) - 1 = y \bullet (1 - r_n).$$

Since $r_n \neq 0$, there exists $m \in \mathbb{N}$ such that $1 - r_n = r_m$.

Thus $x = y \bullet r_m$ and so $x \in E_m$.

In either case we have $x \in E_n$ for some n, giving the Claim.

By Claim 2 we have

$$[0,1) = \bigcup E_n.$$

If E were Lebesgue measurable, then by the Lemma, each $E_n = E \bullet r_n$ would be Lebesgue measurable and satisfy $\mu(E_n) = \mu(E \bullet r_n) = \mu(E)$.

By Claim 1, the sets $\{E_n\}$ are pairwise disjoint, so by countable additivity we have

$$\mu([0,1)) = \sum_{n=0}^{\infty} \mu(E_n) = \sum_{n=0}^{\infty} \mu(E).$$

The value of $\sum \mu(E)$ is either 0 or ∞ .

But the value of $\mu([0,1))$ is 1 because in terms of the Lebesgue measurable singleton sets and $\frac{1}{2}$ -closed dyadic intervals we have

$$[0,1) = (\{0\} \cup (0,1/2] \cup (1/2,1]) - \{1\},\$$

whence $[0,1) \in \mathcal{M}$ and as the Lebesgue measure of singleton sets is zero,

$$\mu([0,1)) = \mu(\{0\}) + \mu((0,1/2]) + \mu((1/2,1]) - \mu(\{1\})$$

= $\lambda((0,1/2]) + \lambda((1/2,1])$
= $1/2 + 1/2 = 1.$

This contradiction implies that E is not Lebesgue measurable.

The set E is called a Vitali nonmeasurable set.

There are many ways to select the elements that constitute E, and hence there are many nonmeasurable subsets of [0, 1).