Math 541 Lecture #18
I1.13: A Nonmeasurable Set, Part II

13: Existence of a Nonmeasurable set in RY. We make use of the subgroup of
rational points Q¥ inside the group R¥.

The cosets of the quotient group
RY/QYN = {z+ Q" : z e RV}

form a cover of RY, i.e., their union is all of R¥.

Furthermore, for any z,2’ € RY, there holds y € x + Q¥ if and only if y — 2 € QV, and
z+QV =2+ QY if and only if z — 2’ € QV.

Claim 1. Two cosets of RY /QV are either identical or disjoint, that is, for z, 2" € R,
either z + QY = 2/ + QN or
(z+QY)N (2’ + Q) =0,

Suppose that (z +QY) N (z/ + QY) # 0.

Then there exists y such y € z + QY and y € 2’ + QY.

Hence there exist r,7" € QY such that y =z +r and y = 2’/ + 1.
Thusx +r=a' +7r',orx—a2' =1 —r € QV.

This implies z + QY = 2/ + Q", and gives the Claim.

Since the union of the cosets is all of RY, each point of R belongs to precisely one coset
x + QY.

By the Axiom of Choice, we choose exactly one point from each coset of RY /QN.

Let E be the collection of these points.

By Claim 1 we then have the pairwise disjoint union

RY = U (m+QN).

zelE
This says that for each y € RY there exists a unique 2 € E and a unique r € Q" such
that y =r + 2.
By enumerating QY = {ry,ry,73,...} we obtain the union

[e.e]

RY = (e + E).

k=1
Claim 2. This union is a pairwise disjoint union.
For k,1 € N we have either (r, + E)N(r;+ E) =0 or (ry + E)N (1, + E) # 0.

In the latter case, there is y € (rpy + E) N (1 + E), and so y = 1y + z; and y = 1, + 25 for
some zq, 29 € F.



Hence 21 — 20 = (y — 1) — (y — 1) = 1y — 1 € Q", meaning that z; + QY = 2, + QY.
By the way the points of £ were chosen, we must have z; = 2z = 2.

Then rp + z = y = r; + z implies r, = r; and hence k = [.

Thus r, + £ = r; + E, and this gives the Claim.

If u.(FE) = 0, then by part (iii) of Proposition 6.1, the set E would be a Lebesgue
measurable set of Lebesgue measure 0, implying by translation invariance that pu(ry +
E) =0 for all k, hence by countable additivity that

oo = p(RY) =Y ul(ry + E) =Y u(E) =0.
k=1 k=1

By this contradiction, we obtain p.(E) > 0.

Now let K be a compact subset of E. [Such do exist, the singleton subsets of the
nonempty E being compact.|

For the bounded, countably infinite set D = B;(0) N QY we have the union

U@+ K)

reD

is a bounded set in R", and hence has finite Lebesgue outer measure.

This union is pairwise disjoint because r + K C r + F and the collection of sets of the
form r + E are pairwise disjoint by Claim 2.

Since K is compact, it is closed, and hence Lebesgue measurable, so that by translation
invariance each r + K is Lebesgue measurable, their union is Lebesgue measurable, and
u(r+ K) = u(K) for all r € D.

Thus by countable additivity of Lebesgue measure we have

oo>u<U(7"—l—K)> :ZM(T+K):Zu(K).

reD reD reD

This implies that u(K) = 0 for all compact subsets K of E.

While it is true that F is not Lebesgue measurable, we have not developed the tools
needed to show this for the possibly unbounded set E.

Instead we consider for some integer [ > 1 the bounded set E; = E'N B;(0).
If pe(E;) = 0 for all [, then by subadditivity of the Lebesgue outer measure we would

have
pe(E) = e <U El) < ZMG(EZ) =0,

contradicting p.(E) > 0.
So there exists [ € N such that u.(FE;) > 0.



Suppose Ej is Lebesgue measurable. Then pu(E;) = u.(E;) > 0.
Since FEj is bounded, there is by Proposition 12.4 an F, set F' such that F' C E; and

ue(El - F) =0.
Since F' is Lebesgue measurable, then E; — F' is Lebesgue measurable, and so
w(Ey — F) = pe(E; — F) = 0.

The set F' is a countable union of closed subsets {F,} of Ej.
Each F), is compact because it is closed and belongs to the bounded FEj.

Since each F}, is a compact subset of E; C E, and every compact subset of E has Lebesgue
measure zero, we have that u(F,) = 0 for all n.

By countable subadditivity we have

u(F) = p (U Fn) <Y u(F,) =0.
Thus we have that
n(Ey) — p(F) = p(E — F) = 0.
But pu(F) =0 and p(E;) > 0 making u(E;) — p(F) > 0, a contradiction.

Thus FEj is not Lebesgue measurable.



