
Math 541 Lecture #20
II.14: Borel Sets, Measurable Sets, and Incomplete Measures, Part II

§14.1A: Measure Theoretic Properties of f . We now explore some of the measure
theoretic properties of the continuous, strictly increasing function f , with respect to
Lebesgue measure µ on R.

Set

An =
⋃
{intervals [α, β], where fn is affine and f ′n = 2n} ,

Bn =
⋃{

intervals [α, β], where fn is affine and f ′n = 2−n
}

For an endpoint z of an interval [α, β] ∈ An, we have f(z) = fn(z); hence

[α, β] ∈ An ⇒ f(β)− f(α) = fn(β)− fn(α) = 2n(β − α),

[α, β] ∈ Bn ⇒ f(β)− f(α) = fn(β)− fn(α) = 2−n(β − α).

Since Lebesgue measure of an interval is the length of the interval, we have

µ(f([α, β])) = f(β)− f(α) = 2n(β − α) = 2nµ([α, β]),

µ(f([α, β])) = f(β)− f(α) = 2−n(β − α) = 2−nµ([α, β]).

Since the finitely many intervals in An are pairwise disjoint and f is strictly increasing,
the images of those intervals by f are also pairwise disjoint.

Similarly, the finitely many intervals in Bn are pairwise disjoint, and so the strict mono-
tonicity of f implies the images of those intervals in Bn are also pairwise disjoint.

Thus for An = [α1, β1] ∪ · · · ∪ [αk, βk], we have

fn(An) = [f(α1), f(β)] ∪ · · · ∪ [f(αk), f(βk)];

a similar statement holds for Bn and fn(Bn).

Finite additivity (implied by countable additivity of µ) gives

µ(f(An)) = 2nµ(An),

µ(f(Bn)) = 2−nµ(Bn).

Since [0, 1] = An ∪ Bn and since An ∩ Bn is a finite set (the common endpoints of the
intervals) and hence of Lebesgue measure 0, we have

1 = µ([0, 1]) = µ(An ∪Bn) = µ(An) + µ(Bn)− µ(An ∩Bn) = µ(An) + µ(Bn).

Similarly, since [0, 1] = f(An) ∪ f(Bn), and since f(An) ∩ f(Bn) is a finite set, we have

1 = µ(f(An)) + µ(f(Bn)).

Since µ(f(An)) = 2nµ(An) and µ(f(Bn)) = 2−nµ(Bn), we obtain

1 = 2nµ(An) + 2−nµ(Bn).



Thus we have two linear equations in the two unknowns µ(An) and µ(Bn):

µ(An) + µ(Bn) = 1
2nµ(An) + 2−nµ(Bn) = 1.

Using Cramer’s Rule we obtain

µ(An) =
2−n − 1

2−n − 2n
=

2−n − 1

2−n − 2n

(
−2n

−2n

)
=

2n − 1

22n − 1
,

µ(Bn) =
1− 2n

2−n − 2n
=

1− 2n

2−n − 2n

(
−2n

−2n

)
= 2n 2n − 1

22n − 1
.

Since µ(f(An)) = 2nµ(An) and µ(f(Bn)) = 2−nµ(Bn), we also obtain

µ(f(An)) = 2n 2n − 1

22n − 1
= µ(Bn),

µ(f(Bn)) =
2n − 1

22n − 1
= µ(An).

Set

Sn =
∞⋃
j=n

Aj, S =
∞⋂
n=1

Sn =
∞⋂
n=1

∞⋃
j=n

An = lim supAn.

Since each An is a union of intervals, it is measurable; hence for each n the set Sn is
measurable; finally S is measurable.

Since ∅ ⊂ S ⊂ Sn for all n, and since Sn = ∪∞j=nAj (not disjointly), we have

0 ≤ µ(S) ≤ µ(Sn) ≤
∞∑
j=n

µ(Aj).

The tail of the series goes to 0 as n→∞ because

∞∑
j=n

µ(Aj) =
∞∑
j=n

2j − 1

22j − 1
=
∞∑
j=n

2j − 1

(2j − 1)(2j + 1)
=
∞∑
j=n

1

2j + 1
≤

∞∑
j=n

1

2j
=

1

2n−1 → 0.

By the Squeeze Theorem we have µ(S) = 0.

Now we show that f(S) is measurable and determine the value of µ(f(S)).

Each set f(An) is a finite union of closed intervals because f is continuous and strictly
increasing.

Thus f(An) is measurable, making the sets

f(Sn) =
∞⋃
j=n

f(Aj), f(S) =
∞⋂
n=1

f(Sn) = lim sup f(An)

measurable as well.



Since ∪∞n=1f(An) ⊂ [0, 1], we have µ(∪f(An)) <∞.

Thus by Proposition 3.1 we have

µ(f(S)) = µ(lim sup f(An)) ≥ lim supµ(f(An)) = lim sup 2n 2n − 1

22n − 1
.

The sequence in the limsup is a convergent sequence with limit 1 becasue

2n 2n − 1

22n − 1
=

22n − 2n

22n − 1
=

22n − 2n

22n − 1

(
2−2n

2−2n

)
=

1− 2−n

1− 2−2n
→ 1.

We obtain that 1 ≤ µ(f(S)).

On the other hand, since f(S) ⊂ [0, 1], we have µ(f(S)) ≤ 1.

By the Squeeze Theorem, we obtain µ(f(S)) = 1.

Therefore, the function f maps the set S of measure 0 to the set f(S) of measure 1.

Likewise, the function f maps the set [0, 1] − S of measure 1 to the set [0, 1] − f(S) of
measure 0 because (using the injectivity of f) we have

f([0, 1]− S) = f([0, 1] ∩ Sc) = f([0, 1]) ∩ f(Sc)

= [0, 1] ∩ [f(S)]c = [0, 1]− f(S),

so that
µ(f([0, 1]− S)) = µ([0, 1]− f(S)) = 1− µ(f(S)) = 0.


