Math 541 Lecture #21

II.14: Borel Sets, Measurable Sets, and Incomplete Measures, Part III

14.2: On the Preimage of a Measurable Set. Recall that a subset E of [0, 1] is relatively open if there is an open subset O of \mathbb{R} such that $E = O \cap [0, 1]$.

For $f : [0,1] \to [0,1]$ continuous, the preimage $f^{-1}(O)$ of a relatively open set O in [0,1] is a relatively open set in [0,1], and hence the preimage is Lebesgue measurable.

Similarly the preimage of a relatively closed set is relatively closed, and hence the preimage of a relatively closed set is Lebesgue measurable.

More generally we consider the collection \mathcal{F} of subsets E of [0, 1] for which the preimage $f^{-1}(E)$ (a subset of [0, 1]) is Lebesgue measurable.

Proposition. The collection \mathcal{F} is a σ -algebra of subsets of [0, 1] that contains Borel subsets of [0, 1].

Proof. We are to show that the relative complement of any element of \mathcal{F} (relative to [0,1]) is in \mathcal{F} , and that the union of a countable collection of elements in \mathcal{F} is in \mathcal{F} .

For $E \in \mathcal{F}$ we have that $f^{-1}(E)$ is Lebesgue measurable.

For the relative complement [0, 1] - E to belong to \mathcal{F} , we are to show that $f^{-1}([0, 1] - E)$ is Lebesgue measurable.

Using properties of preimages of functions on intersections and complements we have

$$f^{-1}([0,1] - E) = f^{-1}([0,1] \cap E^c)$$

= $f^{-1}([0,1]) \cap f^{-1}(E^c)$
= $[0,1] \cap (f^{-1}(E))^c$
= $[0,1] - f^{-1}(E).$

Since $f^{-1}(E)$ is Lebesgue measurable, so then is $[0,1] - f^{-1}(E) = f^{-1}([0,1] - E)$, and hence $[0,1] - E \in \mathcal{F}$.

Now take a countable collection $\{E_n\}$ of elements in \mathcal{F} .

Then for each n we have $f^{-1}(E_n)$ is Lebesgue measurable, so that

$$f^{-1}\left(\bigcup_{n=1}^{\infty} E_n\right) = \bigcup_{n=1}^{\infty} f^{-1}(E_n)$$

is Lebesgue measurable, being the countable union of Lebesgue measurable sets.

Thus \mathcal{F} is σ -algebra.

Each relatively open subset of [0, 1] belongs to \mathcal{F} because its preimage is relatively open. Since the σ -algebra \mathcal{B} of Borel subsets of [0, 1] is the smallest σ -algebra containing the relatively open subsets of [0, 1], it follows that $\mathcal{B} \subset \mathcal{F}$.

Proposition. If E is a Borel subset of [0, 1], then $f^{-1}(E)$ is a Borel subset of [0, 1].

Proof. We will show that $\Omega = \{E \subset [0,1] : f^{-1}(E) \in \mathcal{B}\}$ contains \mathcal{B} .

By an argument similar to that used in the proof of the previous Proposition, we show that Ω is a σ -algebra in [0, 1].

Each relatively open set \mathcal{O} in [0, 1] belongs to Ω because, by the continuity of f, we have $f^{-1}(O)$ is relatively open and hence in \mathcal{B} .

Since Ω is a σ -algebra containing all of the relatively open subsets of [0,1], we have $\mathcal{B} \subset \Omega$.

Thus, each every Borel subset E of [0,1] belongs to Ω , and it has the property that $f^{-1}(E) \in \mathcal{B}$.

14.3: Proofs of Two Propositions. We have now developed enough to prove, using the continuous, strictly increasing function $f : [0, 1] \rightarrow [0, 1]$, the existence of a Lebesgue measurable subset of \mathbb{R} that is not a Borel set, and the existence of a Borel measure that is not complete.

Proposition 14.1. There exists a Lebesgue measurable subset \mathcal{D} of [0, 1] which is not a Borel set, and whose preimage under f is not Lebesgue measurable.

Proof. Recall that there is a Lebesgue measurable subset S of [0, 1] with Lebesgue measure 0 whose image f(S) is Lebesgue measurable with Lebesgue measure 1.

Furthermore, the function f maps the Lebesgue measurable set [0, 1] - S of Lebesgue measure 1 to the Lebesgue measurable set [0, 1] - f(S) of Lebesgue measure zero.

Since Lebesgue measure is complete, every subset of \mathcal{S} is Lebesgue measurable and has Lebesgue measure zero.

Likewise, every subset of [0, 1] - f(S) is Lebesgue measurable and has Lebesgue measure zero.

Let E be the Vitali subset of [0, 1] that is not Lebesgue measurable.

The set $E \cap S$ is Lebesgue measurable because Lebesgue measure is complete: the set $E \cap S$ is a subset of a Lebesgue measurable set of measure zero.

The set E - S is not Lebesgue measurable, because if it were, then E would be the (disjoint) union of the Lebesgue measurable sets E - S and $E \cap S$.

The set $\mathcal{D} = f(E - S)$ is contained in [0, 1] - f(S) because $f(E) \subset [0, 1]$ and by the injectivity of f we have

$$f(E - \mathcal{S}) = f(E \cap \mathcal{S}^c) = f(E) \cap f(\mathcal{S}^c) = f(E) \cap [f(\mathcal{S})]^c = f(E) - f(\mathcal{S}).$$

Since [0,1] - f(S) is a set of Lebesgue measure zero, $f(E) - f(S) \subset [0,1] - f(S)$, and Lebesgue measure is complete, the set \mathcal{D} is Lebesgue measurable with Lebesgue measure zero.

The preimage of \mathcal{D} is not Lebesgue measurable because f is invertible so that

$$f^{-1}(\mathcal{D}) = f^{-1}(f(E - \mathcal{S})) = E - \mathcal{S},$$

which is not measurable.

If the Lebesgue measurable set \mathcal{D} were a Borel set, then by the previous Proposition, the preimage $f^{-1}(\mathcal{D})$ would be a Borel set, and hence Lebesgue measurable.

By this contradiction, the set \mathcal{D} is not a Borel set.

Proposition 14.2. The restriction of Lebesgue measure on \mathbb{R} to the σ -algebra of Borel sets in \mathbb{R} is not a complete measure.

Proof. Let \mathcal{D} be the Lebesgue measurable set of Lebesgue measure zero, as given in the proof of Proposition 14.1.

By Proposition 12.3, there is a set \mathcal{D}_{δ} of type \mathcal{G}_{δ} such that $\mathcal{D} \subset \mathcal{D}_{\delta}$ and

$$\mu(\mathcal{D}_{\delta}) = \mu(\mathcal{D}_{\delta}) - \mu(\mathcal{D}) = \mu(\mathcal{D}_{\delta} - \mathcal{D}) = 0.$$

The set \mathcal{D}_{δ} is a Borel set that has Lebesgue measure zero, but it contains the subset \mathcal{D} that is not a Borel set.

Thus the restriction of Lebesgue measure μ to the σ -algebra of Borel sets in \mathbb{R} is not a complete measure.

Recall that \mathcal{F} is the σ -algebra of subsets E of [0, 1] whose preimages $f^{-1}(E)$ are Lebesgue measurable.

By way of a slight abuse of notation, let \mathcal{M} denote the σ -algebra of Lebesgue measurable subsets of [0, 1].

Then

$$\mathcal{F} = \{ E \subset [0,1] : f^{-1}(E) \in \mathcal{M} \}.$$

Proposition. For the function f, there holds $\mathcal{M} \not\subset \mathcal{F}$.

Proof. By Proposition 14.1, we have the existence of $\mathcal{D} \in \mathcal{M}$ for which $f^{-1}(\mathcal{D}) \notin \mathcal{M}$. Thus $\mathcal{D} \notin \mathcal{F}$, which implies that $\mathcal{M} \notin \mathcal{F}$.