
Math 541 Lecture #22
II.15: More on Borel Measures, Part I

Recall that a Borel measure µ on X is a measure whose σ-algebra domain contains the
Borel sets of X.

[Note: some authors in other books define a Borel measure to be a measure whose domain
is precisely the Borel sets of X.]

The Lebesgue measure on RN is a Borel measure which has the properties that Lebesgue
measurable sets E of finite Lebesgue measure can be approximated by the Lebesgue mea-
sure of open sets containing E or closed subsets of E. [This is the content of Propositions
12.3 and 12.4.]

To what extend can this approximation be done for an arbitrary Borel measure?

Example. The non σ-finite counting measure on R is a Borel measure because it is
defined on σ-algebra of all subsets of R, hence on the Borel sets.

A singleton set has a counting measure value of 1, but every open set, being a infinite
subset, has counting measure value of ∞.

Thus the counting measure values of opens sets do not approximate the counting measure
value of all Borel sets.

But there are some Borel measures for which the approximation can be done.

Proposition 15.1. Let µ be a finite Borel measure in RN , i.e., µ(RN) <∞, and let E
be a Borel set.

(1) For all ε > 0 there exists a closed subset Ec,ε such that Ec,ε ⊂ E and µ(E−Ec,ε) ≤ ε.

(2) For all ε > 0, there exists a open subset Eo,ε such that E ⊂ Eo,ε and µ(E0,ε−E) ≤ ε.

Proof. (1) Let A be the σ-algebra domain of the finite Borel measure µ in RN .

Let C0 be the collection of sets E ∈ A such that for every ε > 0 there exists a closed set
C ⊂ E such that µ(E − C) ≤ ε.

This collection is nonempty because for each closed set C we have C ⊂ C and µ(C−C) =
0 ≤ ε.

We will show that C0 contains a σ-algebra that contains all of the open sets, and hence
all Borel sets.

Claim 1. Countable intersections of elements of C0 are in C0.
Let {En} be a countable collection of sets in C0.
Having fixed ε > 0, select closed sets Cn ⊂ En such that µ(En − Cn) ≤ 2−nε.

The inclusion
∞⋂
n=1

En −
∞⋂
n=1

Cn ⊂
∞⋃
n=1

(En − Cn)

holds because for x ∈ ∩En−∩Cn we have x ∈ ∩En but x 6∈ ∩Cn, meaning x ∈ En for all
n, while x ∈ ∪Cc

n, meaning there is some m for which x ∈ Cc
m; for this m we then have

x ∈ Em and x ∈ Cc
m, meaning that x ∈ Em but x 6∈ Cm, and hence x ∈ ∪(En − Cn).



By the monotonicity and subadditivity of µ we have

µ

(
∞⋂
n=1

En −
∞⋂
n=1

Cn

)
≤ µ

(
∞⋃
n=1

(En − Cn)

)
≤

∞∑
n=1

µ(En − Cn) ≤
∞∑
n=1

ε

2n
= ε.

Since ∩Cn is closed, the set ∩En belongs to C0, and we have Claim 1.

Claim 2. Countable unions of elements of C0 are in C0.
Let {En} be a countable collection in C0, and for a fixed ε > 0 select closed sets Cn ⊂ En
for which µ(En − Cn) ≤ ε/2n.

The sequence of sets

Am =
∞⋃
n=1

En −
m⋃
n=1

Cn

is monotone decreasing, and µ(A1) <∞ because µ is a finite measure, and so

lim
m→∞

µ(Am) = µ

(
∞⋃
n=1

En −
∞⋃
n=1

Cn

)
.

The inclusion
∞⋃
n=1

En −
∞⋃
n=1

Cn ⊂
∞⋃
n=1

(En − Cn)

holds because for x belonging to the left-hand side we have x ∈ Em for some m while
x 6∈ ∪Cn, whence x ∈ Em and x ∈ ∩Cc

n, so that x ∈ Em and x ∈ Cc
m, thus giving x ∈ Em

and x 6∈ Cm, i.e., x ∈ Em − Cm.

By monotonicity and countably subadditivity of the measure we have

µ

(
∞⋃
n=1

En −
∞⋃
n=1

Cn

)
≤ µ

(
∞⋃
n=1

(En − Cn)

)
≤

∞∑
n=1

µ(En − Cn) ≤
∞∑
n=1

ε

2n
= ε.

Thus limµ(Am) converges to a value no bigger than ε, and so there is m ∈ N such that
µ(Am) ≤ 2ε.

The union ∪mn=1Cn is a closed subset because it is a finite union of closed subsets.

Thus the union ∪En belongs to C0, and we have Claim 2.

The collection C0 trivially contains all of the closed sets, and in particular, the closed
dyadic cubes.

Every open set is a countable union of closed dyadic cubes.

Since by Claim 2, the countable union of elements of C0 is in C0, we have that C0 contains
all of the open sets.

How do we get “closed under complements” for C0?
Set

C = {E ∈ C0 : Ec ∈ C0}.



This collection C is closed under taking complements: if E ∈ C, then E ∈ C0 with Ec ∈ C0,
so that Ec ∈ C because Ec ∈ C0 and (Ec)c = Ec ∈ C0.
In particular, since the complement of a closed set is open, and every open set is in C0,
we have that every closed set is in C.
Similarly every open set is in C.
For C to be a σ-algebra, it remains to show that C is closed under countable unions.

Let {En} be a countable collection in C.
Then for each n we have En and Ec

n both belong to C0.
By Claim 2, we have ∪En ∈ C0, and by Claim 1 we have(

∞⋃
n=1

En

)c

=
∞⋂
n=1

Ec
n ∈ C0.

Thus ∪En belongs to C.
Therefore C is a σ-algebra that contains the open sets, and hence the Borel sets.

(2) Let E be a Borel set.

Then Ec is a Borel set, and there is for every ε > 0 by (1) a closed set C such that
C ⊂ Ec and µ(Ec − C) ≤ ε.

Since

Ec − C = (RN − E)− C
= (RN ∩ Ec)− C
= (RN ∩ Ec) ∩ Cc

= (RN ∩ Cc) ∩ Ec

= (RN − C) ∩ Ec

= (RN − C)− E
= Cc − E,

we have
µ(Cc − E) = µ(Ec − C) ≤ ε.

The open set Cc satisfies E ⊂ Cc and µ(Cc − E) ≤ ε. �

Corollary 15.2. Let µ be a finite Borel measure in RN and let E be a Borel set. Then
there exists a

(1) a set Eσ of type Fσ such that Eσ ⊂ E and µ(E − Eσ) = 0, and

(2) a set Eδ of type Gδ such that E ⊂ Eδ and µ(Eδ − E) = 0.

The proof of this Corollary is similar to what we saw before in the approximation theory
of measurable sets.


