
Math 541 Lecture #26
III.2: The Egorov Theorem

III.3: Approximating Measurable Functions by Simple Functions, Part I

How close to being uniform is the pointwise convergence of a sequence of real-valued
measurable functions {fn} to a real-valued measurable function f , on a measurable E?

The Egorov Theorem gives the answer on how pointwise convergence is nearly uniform
convergence when E has finite measure (see the Appendix for an example).

Theorem (Egorov). For a measurable E, suppose {fn} and f are measurable real-
valued functions defined on E. If µ(E) <∞ and {fn} converges a.e. in E to f , then for
every η > 0 there exists a measurable set Eη such that Eη ⊂ E, µ(E − Eη) ≤ η, and
{fn} converges uniformly to f on Eη.

Proof. WLOG we may assume that the measurable {fn} converges pointwise to the
measurable f on E.

For n, k ∈ N, define the measurable sets

En(k) =
∞⋃
m=n

{
x ∈ E : |fm(x)− f(x)| > 1

k

}
.

Points in En(k) are points x ∈ E where {fn(x)} is not converging “too fast” to f(x).

When k is fixed, the sets En(k) are monotone decreasing in n since the union is over less
sets as n grows.

For each x ∈ E, since fm(x)→ f(x) there exists M ∈ N such that |fm(x)− f(x)| ≤ 1/k
for all m ≥M .

Thus for each x ∈ E we have x 6∈ En(k) for all large enough n, so that

∞⋂
n=1

En(k) =
∞⋂
n=1

∞⋃
m=n

{
x ∈ E : |fm(x)− f(x)| > 1

k

}
= ∅.

Since E1(k) ⊂ E we have µ(E1(k)) ≤ µ(E) <∞, and so

lim
n→∞

µ(En(k)) = 0.

For η > 0 and k ∈ N we choose n(k, η) large enough so that

µ(En(k,η)(k)) ≤ η

2k
.

We set

Aη =
∞⋃
k=1

En(k,η)(k) ⊂ E.

Then

µ(Aη) = µ

(
∞⋃
k=1

En(k,η)(k)

)
≤

∞∑
k=1

µ(En(k,η)(k) ≤
∞∑
m=1

η

2k
= η.



Set Eη = E − Aη.
Since Aη ⊂ E, we have E − Eη = Aη, and hence

µ(E − Eη) = µ(Aη) ≤ η.

We now show that the convergence of {fn} to f is uniform on Eη.

For ε > 0 choose kε ∈ N so that εkε ≥ 1, and set nε = n(kε, η).

Then as

En(kε,η)(kε) =
∞⋃

m=n(kε,η)

{
x ∈ E : |fm(x)− f(x)| > 1

kε

}
⊂ Aη,

we have

Eη = E − Aη ⊂ E − En(kε,η)(kε) =
∞⋂

m=n(kε,η)

{
x ∈ E : |fm(x)− f(x)| ≤ 1

kε

}
.

Thus for all n ≥ nε = n(kε, η) and all x ∈ Eη we have

|fn(x)− f(x)| ≤ 1

kε
≤ ε

because εkε ≥ 1. �

For Lebesgue measure µ on RN , we can replace Eη with a closed set.

Corollary. For a Lebesgue measurable set E in RN , suppose {fn} and f are real-valued
measurable functions on E. If µ(E) < ∞, and {fn} converges to f a.e. in E, then for
every η > 0 there exists a closed set Cη such that Cη ⊂ E, µ(E − Cη) ≤ η, and {fn}
converges uniformly to f on Cη.

§3: Approximating Measurable Functions by Simple Functions. We show
that the class of simple measurable functions is dense in the set of measurable functions.

Definition. A real-valued function f defined on a measurable set E is simple if it is
measurable and if its range is a finite set.

Example. The characteristic function f = χA for a measurable set A in X is a simple
function because

[f ≤ c] =


X if c ≥ 1,

X − A if 0 ≤ c < 1,

∅ if c < 0,

and the range of f is {0, 1}.
Simple functions have a “canonical form.”

If {a1, a2, . . . , an} are the distinct values of a simple function f defined on a measurable
E, then the sets

Ei = {x ∈ E : f(x) = ai} = {x ∈ E : f(x) ≥ ai} ∩ {x ∈ E : f(x) ≤ ai}



are measurable and pairwise disjoint.

The canonical form of f is

f =
n∑
k=1

aiχEi .

On the other hand, given measurable sets E1, E2, . . . , En and real numbers a1, a2, . . . , an,
the function

f =
n∑
k=1

aiχEi

is simple but not necessarily in its canonical form, unless the sets E1, E2, . . . , En are
pairwise disjoint and the values a1, a2, . . . , an are distinct.

Facts: the sum and product of simple functions are simple, but the sums and products
of their canonical forms are not necessarily canonical.

Proposition 3.1. For each nonnegative measurable f : E → R∗, there exists a sequence
of simple measurable functions {fn} such that fn ≤ fn+1 (monotone nondecreasing) and

lim
n→∞

fn(x) = f(x) for all x ∈ E

(pointwise convergence).

Proof. For each n ∈ N define a function fn : E → R by

fn(x) =

n if f(x) ≥ n,
j

2n
if
j

2n
≤ f(x) <

j + 1

2n
, for j = 0, 1, 2, . . . , n2n − 1.

By construction we have fn ≤ fn+1.

Since f is measurable, the sets[
f ≥ j

2n

]
−
[
f ≥ j + 1

2n

]
, j = 0, 1, 2, . . . , n2n − 1,

and [f ≥ n] are all measurable and disjoint.

Thus each fn is simple.

Fix x ∈ E.

If f(x) ∈ R, then there exists n0 ∈ N such that f(x) ≤ n0, and the definition of fn(x)
implies by subtracting fn(x) = j/2n from j/2n ≤ f(x) < (j + 1)/2n that

0 ≤ f(x)− fn(x) ≤ 1

2n
for all n ≥ n0.

If f(x) =∞, then fn(x) = n for all n.

In either case, we have lim fn(x) = f(x).

Thus {fn} converges pointwise to f(x) for each x ∈ E. �



Appendix

Example. Equip R with Lebesgue measure.

For each n ∈ N, the function fn(x) = xn, x ∈ R, is measurable because g(x) = x is
measurable ([g > c] = {x ∈ R : x > c} = (c,∞] is measurable) and [g(x)]n = fn(x) is
measurable.

The restriction of fn to the measurable E = [0, 1] is also measurable.

Thus the sequence {fn} on [0, 1] is a sequence of measurable real-valued functions.

The pointwise limit of {fn} on [0, 1] is the function

f(x) =

{
0 if 0 ≤ x < 1,

1 if x = 1,

which is measurable because

[f > c] = {x ∈ [0, 1] : f(x) > c} =


∅ if c ≥ 1,

{1} if 0 ≤ c < 1,

[0, 1] if c < 0.

If the pointwise convergence were uniform on [0, 1], then the limit function would be
continuous because each fn is continuous; but the limit function is not continuous, and
so the pointwise convergence is not uniform on [0, 1].

However, if we restrict to the closed interval [0, β] for any 0 < β < 1, then the pointwise
convergence is uniform on [0, β].

We can choose β close to 1 so that µ([0, 1]− [0, β]) = 1− β is small.

Proof of Corollary of the Egorov Theorem. By the Egorov Thoerem, for each η > 0
there exists a measurable set Eη such that Eη ⊂ E, µ(E−Eη) ≤ η/2, and {fn} converges
uniformly to f on Eη.

Since µ(E) < ∞, then µ(Eη) < ∞, and so by Proposition 15.3 there exists a closed set
Cη such that Cη ⊂ Eη and µ(Eη − Cη) ≤ η/2.

Since E − Cη = (E − Eη) ∪ (Eη − Cη) disjointly, we have that

µ(E − Cη) = µ(E − Eη) + µ(Eη − Cη) ≤ η.

Since Cη ⊂ Eη and {fn} converges uniformly to f on Eη, we have that {fn} converges
uniformly to f on Cη. �


