Math 541 Lecture #26
IT1.2: The Egorov Theorem
I11.3: Approximating Measurable Functions by Simple Functions, Part I

How close to being uniform is the pointwise convergence of a sequence of real-valued
measurable functions {f,} to a real-valued measurable function f, on a measurable E?

The Egorov Theorem gives the answer on how pointwise convergence is nearly uniform
convergence when E has finite measure (see the Appendix for an example).

Theorem (Egorov). For a measurable F, suppose {f,} and f are measurable real-
valued functions defined on E. If u(E) < oo and {f,,} converges a.e. in E to f, then for
every 1 > 0 there exists a measurable set E, such that E, C E, u(E — E,) < n, and
{f.} converges uniformly to f on E,,.

Proof. WLOG we may assume that the measurable {f,} converges pointwise to the
measurable f on F.

For n, k € N, define the measurable sets

[e.9]

B = | {2 € B lfulo) - £0) > 1}

Points in F, (k) are points x € E where {f,(z)} is not converging “too fast” to f(z).

When £ is fixed, the sets E, (k) are monotone decreasing in n since the union is over less
sets as n grows.

For each = € E, since f,,(z) — f(x) there exists M € N such that |f,,(z) — f(z)| < 1/k
for all m > M.

Thus for each € E we have x € E,(k) for all large enough n, so that

gEn(k) = nZImL:Jn {x € E:|fm(x)— f(z) > %} = 0.

Since E (k) C E we have u(E;(k)) < p(E) < oo, and so
lim u(E,(k)) =0.

n—o0

For n > 0 and k € N we choose n(k,n) large enough so that

1By (k) < or

Qk
We set .
Ay = Engem (k) C E
k=1
Then



Set £, = ' — A,.
Since A, C F, we have I/ — F, = A,,, and hence
W(E — E,) = n(A,) <.

We now show that the convergence of {f,} to f is uniform on E,,.

For € > 0 choose k. € N so that ek, > 1, and set n. = n(k.,n).

Then as
- 1
B ey (ke) = U x€FE:|fn(z)— flx)| > - C A,
m=n(ke,n) €
we have
~ 1
Ey=E—A, CE= Bk =[] (2€E:|ful@)—flo)] <.
m=n(ke,n) €

Thus for all n > n. = n(k.,n) and all x € E, we have

|[fn(z) = f(z)] <

1 <
ko= ©
because ek, > 1. O

For Lebesgue measure y on RY, we can replace E, with a closed set.

Corollary. For a Lebesgue measurable set E in RY, suppose {f,} and f are real-valued
measurable functions on E. If u(F) < oo, and {f,} converges to f a.e. in E, then for
every 1 > 0 there exists a closed set C, such that C,, C E, u(E — C,) <, and {f,}
converges uniformly to f on C,.

§3: Approximating Measurable Functions by Simple Functions. We show
that the class of simple measurable functions is dense in the set of measurable functions.

Definition. A real-valued function f defined on a measurable set E is simple if it is
measurable and if its range is a finite set.

Example. The characteristic function f = x4 for a measurable set A in X is a simple
function because

X ifc>1,
[f<c=<X—-A if0<ec<1,
0 if ¢ <0,

and the range of f is {0,1}.
Simple functions have a “canonical form.”

If {ay,as,...,a,} are the distinct values of a simple function f defined on a measurable
E then the sets

Ei={zeE:fx)=aq}={xcE: flx) >a}n{reE: f(x) <a}



are measurable and pairwise disjoint.

The canonical form of f is

f=aixe,
k=1

On the other hand, given measurable sets 1, Fs, ..., E, and real numbers aq, as, . . ., ay,,
the function .
f=> aixe,
k=1
is simple but not necessarily in its canonical form, unless the sets Fy, Fs, ..., F, are
pairwise disjoint and the values ay, as, ..., a, are distinct.

Facts: the sum and product of simple functions are simple, but the sums and products
of their canonical forms are not necessarily canonical.

Proposition 3.1. For each nonnegative measurable f : E — R*, there exists a sequence
of simple measurable functions {f,,} such that f, < f,+1 (monotone nondecreasing) and

lim f,(z) = f(x) forallz € E

n—oo

(pointwise convergence).

Proof. For each n € N define a function f, : E — R by

@) n if f(z) >
fulz) = J .. J J+1 n
o 1f2n_f()<2— for j=0,1,2,...,n2" — 1.

By construction we have f, < f,.1.

Since f is measurable, the sets

IEE L IR RN

and [f > n] are all measurable and disjoint.
Thus each f,, is simple.
Fixx e Eb.

If f(x) € R, then there exists nyg € N such that f(x) < ng, and the definition of f,(x)
implies by subtracting f,,(z) = j/2" from j/2" < f(x) < (j + 1)/2" that

1
0< f(z) — fulz) < o for all n > ny.

If f(z) = oo, then f,(z) = n for all n.
In either case, we have lim f,(x) = f(x).

Thus {f,} converges pointwise to f(x) for each x € F. a



Appendix
Example. Equip R with Lebesgue measure.

For each n € N, the function f,(x) = 2™, « € R, is measurable because g(z) = z is
measurable ([¢g > ¢] = {x € R : x > ¢} = (¢, 00] is measurable) and [g(z)]" = f.(x) is
measurable.

The restriction of f,, to the measurable E = [0, 1] is also measurable.
Thus the sequence {f,} on [0,1] is a sequence of measurable real-valued functions.

The pointwise limit of {f,} on [0, 1] is the function

0 ifo<z<1,
f(x)_{1 if o =1,

which is measurable because

0 ife>1,
f>cd={ze0,1]: f(x) >c}=<¢{1} if0<c<]1,
[0,1] ife<O.

If the pointwise convergence were uniform on [0,1], then the limit function would be
continuous because each f,, is continuous; but the limit function is not continuous, and
so the pointwise convergence is not uniform on [0, 1].

However, if we restrict to the closed interval [0, 8] for any 0 < 8 < 1, then the pointwise
convergence is uniform on [0, f].

We can choose 3 close to 1 so that u([0,1] —[0,3]) =1 — /3 is small.

Proof of Corollary of the Egorov Theorem. By the Egorov Thoerem, for each 7 > 0
there exists a measurable set £, such that E, C E, p(E—E,) <n/2, and {f,} converges
uniformly to f on E,,.

Since pu(E) < oo, then pu(E,) < oo, and so by Proposition 15.3 there exists a closed set
C, such that C,, C E, and p(E, — C,) <n/2.

Since £ — C,, = (E — E,)) U (E, — C,)) disjointly, we have that
p(E —Cy) = p(E = Ey) + p(Ey — Cy) <.

Since C,, C E, and {f,} converges uniformly to f on E,, we have that {f,} converges
uniformly to f on C,. U



