Math 541 Lecture #26 III.2: The Egorov Theorem III.3: Approximating Measurable Functions by Simple Functions, Part I

How close to being uniform is the pointwise convergence of a sequence of real-valued measurable functions $\{f_n\}$ to a real-valued measurable function f, on a measurable E?

The Egorov Theorem gives the answer on how pointwise convergence is nearly uniform convergence when E has finite measure (see the Appendix for an example).

Theorem (Egorov). For a measurable E, suppose $\{f_n\}$ and f are measurable realvalued functions defined on E. If $\mu(E) < \infty$ and $\{f_n\}$ converges a.e. in E to f, then for every $\eta > 0$ there exists a measurable set E_{η} such that $E_{\eta} \subset E$, $\mu(E - E_{\eta}) \leq \eta$, and $\{f_n\}$ converges uniformly to f on E_{η} .

Proof. WLOG we may assume that the measurable $\{f_n\}$ converges pointwise to the measurable f on E.

For $n, k \in \mathbb{N}$, define the measurable sets

$$E_n(k) = \bigcup_{m=n}^{\infty} \left\{ x \in E : |f_m(x) - f(x)| > \frac{1}{k} \right\}.$$

Points in $E_n(k)$ are points $x \in E$ where $\{f_n(x)\}$ is not converging "too fast" to f(x).

When k is fixed, the sets $E_n(k)$ are monotone decreasing in n since the union is over less sets as n grows.

For each $x \in E$, since $f_m(x) \to f(x)$ there exists $M \in \mathbb{N}$ such that $|f_m(x) - f(x)| \leq 1/k$ for all $m \geq M$.

Thus for each $x \in E$ we have $x \notin E_n(k)$ for all large enough n, so that

$$\bigcap_{n=1}^{\infty} E_n(k) = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} \left\{ x \in E : |f_m(x) - f(x)| > \frac{1}{k} \right\} = \emptyset.$$

Since $E_1(k) \subset E$ we have $\mu(E_1(k)) \leq \mu(E) < \infty$, and so

$$\lim_{n \to \infty} \mu(E_n(k)) = 0.$$

For $\eta > 0$ and $k \in \mathbb{N}$ we choose $n(k, \eta)$ large enough so that

$$\mu(E_{n(k,\eta)}(k)) \le \frac{\eta}{2^k}.$$

We set

$$A_{\eta} = \bigcup_{k=1}^{\infty} E_{n(k,\eta)}(k) \subset E.$$

Then

$$\mu(A_{\eta}) = \mu\left(\bigcup_{k=1}^{\infty} E_{n(k,\eta)}(k)\right) \le \sum_{k=1}^{\infty} \mu(E_{n(k,\eta)}(k)) \le \sum_{m=1}^{\infty} \frac{\eta}{2^k} = \eta.$$

Set $E_{\eta} = E - A_{\eta}$. Since $A_{\eta} \subset E$, we have $E - E_{\eta} = A_{\eta}$, and hence

$$\mu(E - E_{\eta}) = \mu(A_{\eta}) \le \eta$$

We now show that the convergence of $\{f_n\}$ to f is uniform on E_{η} . For $\epsilon > 0$ choose $k_{\epsilon} \in \mathbb{N}$ so that $\epsilon k_{\epsilon} \ge 1$, and set $n_{\epsilon} = n(k_{\epsilon}, \eta)$. Then as

$$E_{n(k_{\epsilon},\eta)}(k_{\epsilon}) = \bigcup_{m=n(k_{\epsilon},\eta)}^{\infty} \left\{ x \in E : |f_m(x) - f(x)| > \frac{1}{k_{\epsilon}} \right\} \subset A_{\eta},$$

we have

$$E_{\eta} = E - A_{\eta} \subset E - E_{n(k_{\epsilon},\eta)}(k_{\epsilon}) = \bigcap_{m=n(k_{\epsilon},\eta)}^{\infty} \left\{ x \in E : |f_m(x) - f(x)| \le \frac{1}{k_{\epsilon}} \right\}$$

Thus for all $n \ge n_{\epsilon} = n(k_{\epsilon}, \eta)$ and all $x \in E_{\eta}$ we have

$$|f_n(x) - f(x)| \le \frac{1}{k_{\epsilon}} \le \epsilon$$

because $\epsilon k_{\epsilon} \geq 1$.

For Lebesgue measure μ on \mathbb{R}^N , we can replace E_η with a closed set.

Corollary. For a Lebesgue measurable set E in \mathbb{R}^N , suppose $\{f_n\}$ and f are real-valued measurable functions on E. If $\mu(E) < \infty$, and $\{f_n\}$ converges to f a.e. in E, then for every $\eta > 0$ there exists a closed set C_η such that $C_\eta \subset E$, $\mu(E - C_\eta) \leq \eta$, and $\{f_n\}$ converges uniformly to f on C_η .

§3: Approximating Measurable Functions by Simple Functions. We show that the class of simple measurable functions is dense in the set of measurable functions.

Definition. A real-valued function f defined on a measurable set E is simple if it is measurable and if its range is a finite set.

Example. The characteristic function $f = \chi_A$ for a measurable set A in X is a simple function because

$$[f \le c] = \begin{cases} X & \text{if } c \ge 1, \\ X - A & \text{if } 0 \le c < 1, \\ \emptyset & \text{if } c < 0, \end{cases}$$

and the range of f is $\{0, 1\}$.

Simple functions have a "canonical form."

If $\{a_1, a_2, \ldots, a_n\}$ are the distinct values of a simple function f defined on a measurable E, then the sets

$$E_i = \{x \in E : f(x) = a_i\} = \{x \in E : f(x) \ge a_i\} \cap \{x \in E : f(x) \le a_i\}$$

are measurable and pairwise disjoint.

The canonical form of f is

$$f = \sum_{k=1}^{n} a_i \chi_{E_i}.$$

On the other hand, given measurable sets E_1, E_2, \ldots, E_n and real numbers a_1, a_2, \ldots, a_n , the function

$$f = \sum_{k=1}^{n} a_i \chi_{E_i}$$

is simple but not necessarily in its canonical form, unless the sets E_1, E_2, \ldots, E_n are pairwise disjoint and the values a_1, a_2, \ldots, a_n are distinct.

Facts: the sum and product of simple functions are simple, but the sums and products of their canonical forms are not necessarily canonical.

Proposition 3.1. For each nonnegative measurable $f : E \to \mathbb{R}^*$, there exists a sequence of simple measurable functions $\{f_n\}$ such that $f_n \leq f_{n+1}$ (monotone nondecreasing) and

$$\lim_{n \to \infty} f_n(x) = f(x) \text{ for all } x \in E$$

(pointwise convergence).

Proof. For each $n \in \mathbb{N}$ define a function $f_n : E \to \mathbb{R}$ by

$$f_n(x) = \begin{cases} n & \text{if } f(x) \ge n, \\ \frac{j}{2^n} & \text{if } \frac{j}{2^n} \le f(x) < \frac{j+1}{2^n}, \text{ for } j = 0, 1, 2, \dots, n2^n - 1. \end{cases}$$

By construction we have $f_n \leq f_{n+1}$.

Since f is measurable, the sets

$$\left[f \ge \frac{j}{2^n}\right] - \left[f \ge \frac{j+1}{2^n}\right], \ j = 0, 1, 2, \dots, n2^n - 1,$$

and $[f \ge n]$ are all measurable and disjoint.

Thus each f_n is simple.

Fix $x \in E$.

If $f(x) \in \mathbb{R}$, then there exists $n_0 \in \mathbb{N}$ such that $f(x) \leq n_0$, and the definition of $f_n(x)$ implies by subtracting $f_n(x) = j/2^n$ from $j/2^n \leq f(x) < (j+1)/2^n$ that

$$0 \le f(x) - f_n(x) \le \frac{1}{2^n} \text{ for all } n \ge n_0.$$

If $f(x) = \infty$, then $f_n(x) = n$ for all n.

In either case, we have $\lim f_n(x) = f(x)$.

Thus $\{f_n\}$ converges pointwise to f(x) for each $x \in E$.

Appendix

Example. Equip \mathbb{R} with Lebesgue measure.

For each $n \in \mathbb{N}$, the function $f_n(x) = x^n$, $x \in \mathbb{R}$, is measurable because g(x) = x is measurable $([g > c] = \{x \in \mathbb{R} : x > c\} = (c, \infty]$ is measurable) and $[g(x)]^n = f_n(x)$ is measurable.

The restriction of f_n to the measurable E = [0, 1] is also measurable.

Thus the sequence $\{f_n\}$ on [0, 1] is a sequence of measurable real-valued functions.

The pointwise limit of $\{f_n\}$ on [0, 1] is the function

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1, \\ 1 & \text{if } x = 1, \end{cases}$$

which is measurable because

$$[f > c] = \{x \in [0, 1] : f(x) > c\} = \begin{cases} \emptyset & \text{if } c \ge 1, \\ \{1\} & \text{if } 0 \le c < 1, \\ [0, 1] & \text{if } c < 0. \end{cases}$$

If the pointwise convergence were uniform on [0, 1], then the limit function would be continuous because each f_n is continuous; but the limit function is not continuous, and so the pointwise convergence is not uniform on [0, 1].

However, if we restrict to the closed interval $[0, \beta]$ for any $0 < \beta < 1$, then the pointwise convergence is uniform on $[0, \beta]$.

We can choose β close to 1 so that $\mu([0,1] - [0,\beta]) = 1 - \beta$ is small.

Proof of Corollary of the Egorov Theorem. By the Egorov Theorem, for each $\eta > 0$ there exists a measurable set E_{η} such that $E_{\eta} \subset E$, $\mu(E - E_{\eta}) \leq \eta/2$, and $\{f_n\}$ converges uniformly to f on E_{η} .

Since $\mu(E) < \infty$, then $\mu(E_{\eta}) < \infty$, and so by Proposition 15.3 there exists a closed set C_{η} such that $C_{\eta} \subset E_{\eta}$ and $\mu(E_{\eta} - C_{\eta}) \leq \eta/2$.

Since $E - C_{\eta} = (E - E_{\eta}) \cup (E_{\eta} - C_{\eta})$ disjointly, we have that

$$\mu(E - C_{\eta}) = \mu(E - E_{\eta}) + \mu(E_{\eta} - C_{\eta}) \le \eta.$$

Since $C_{\eta} \subset E_{\eta}$ and $\{f_n\}$ converges uniformly to f on E_{η} , we have that $\{f_n\}$ converges uniformly to f on C_{η} .