
Math 541 Lecture #27
III.3: Approximating Measurable Functions by Simple Functions, Part II

III.5: Quasi-Continuous Functions and Lusin’s Theorem

§3: Approximating Measurable Functions by Simple Functions. We show
that there exists a sequence of simple measurable functions converging pointwise to a
measurable function.

To apply Proposition 3.1 to a function f : E → R∗, we decompose f into its positive and
negatives parts.

Set

f+ =
|f |+ f

2
and f− =

|f | − f
2

.

Then f+ ≥ 0, f− ≥ 0, and f = f+ − f−.

If f is measurable, then so are f+ and f−.

Corollary 3.2. For a measurable f : E → R∗ there exists a sequence of simple functions
{fn} such that f(x) = lim fn(x) for all x ∈ E.

Proof. We apply Proposition 3.2 to each of f+ and f−, giving sequences {f+
n } and {f−n }

of simple functions that converge pointwise respectively to f+ and f− on E.

Then the sequence {fn} defined by fn = f+
n −f−n , consisting of simple functions, converges

to f pointwise on E. �

§5. Quasi-continuous Functions and Lusin’s Theorem. We will characterize
measurable functions on RN with respect to Lebesgue measure.

Definition. For a Lebesgue measurable set E in RN , a function f : E → R∗ is quasi-
continuous if for every ε > 0 there exists a closed set Ec,ε such that Ec,ε ⊂ E, µ(E −
Ec,ε) ≤ ε, and the restriction of f to Ec,ε is continuous.

Proposition 5.1. A simple function defined on a bounded measurable set E in RN is
quasi-continuous.

Proof. Let f : E → R be simple and let {a1, a2, . . . , an} be the range of f .

Then the sets Ei = {x ∈ E : f(x) = ai} are measurable and bounded

For ε > 0, there exists, by Proposition 12.4 in Chapter II, closed sets Ec,i such that

Ec,i ⊂ Ei, µ(Ei − Ec,i) ≤ ε/n, for i = 1, 2, . . . , n.

Then the closed (and bounded and hence compact) set

Ec,ε =
n⋃
k=1

Ec,i



satisfies

E − Ec,ε = E ∩ Ec
c,ε = E ∩

(
n⋂
k=1

Ec
c,i

)
=

n⋂
k=1

(
E ∩ Ec

c,i

)
=

n⋂
k=1

(
E − Ec,i

)
⊂

n⋃
k=1

(
E − Ec,i

)
.

Thus

µ(E − Ec,ε) ≤
n∑
k=1

µ(E − Ec,i) =
n∑
k=1

ε

n
= ε.

Because the sets Ec,1, Ec,2, . . . , Ec,n are compact and disjoint, they are at positive mutual
distances from each other.

Thus, since f is constant on each Ec,i, the function f is continuous on Ec,ε.

Thus f is quasi-continuous. �

Theorem 5.2 (Lusin). Let E be a bounded Lebesgue measurable set in RN . A
function f : E → R is measurable if and only if it is quasi-continuous.

Proof. Suppose for a bounded E that the measurable f : E → R is nonnegative.

By Proposition 3.1 there exists a sequence of simple functions {fn} that converges point-
wise to f .

By Proposition 5.1 for each n ∈ N the function fn is quasi-continuous.

For ε > 0 there then exists closed sets Ec,n such that Ec,n ⊂ E,

µ(E − Ec,n) ≤ ε

2n+1
,

and the restriction of fn to Ec,n is continuous.

By the Egorov Theorem there is a closed set Ec,0 (the set Ec,n with n = 0) for which
Ec,0 ⊂ E, µ(E − Ec,0) ≤ ε/2, and {fn} converges uniformly to f on Ec,0.

The set

Ec,ε = Ec,0 ∩
∞⋂
n=1

Ec,n =
∞⋂
n=0

Ec,n

is a closed subset of E for which

E − Ec,ε = E −
∞⋂
n=0

Ec,n = E ∩
∞⋃
n=0

Ec
c,n =

∞⋃
n=0

(E ∩ Ec
c,n) =

∞⋃
n=0

(E − Ec,n).

Hence

µ(E − Ec,ε) = µ

(
∞⋃
n=0

(E − Ec,n)

)
≤

∞∑
n=0

µ(E − Ec,n) ≤
∞∑
n=0

ε

2n+1
= ε.

Since each fn is continuous on Ec,ε and {fn} converges uniformly to f on Ec,ε, the function
f restricted to Ec,ε is continuous, and hence f is quasi-continuous.



For f not necessarily nonnegative, we decompose f = f+ − f− into its positive and
negative parts, and apply the above argument to f+ and f−.

This shows that f is the difference of two quasi-continuous functions, which is a quasi-
continuous function. [You have it as a homework problem to prove this.]

Now suppose that f is quasi-continuous.

For ε there exists a closed set Ec,ε such that Ec,ε ⊂ E, µ(E − Ec,ε) ≤ ε, and f restricted
to Ec,ε is continuous.

To show that [f ≥ c] is measurable for all c ∈ R, we have that (the disjoint union)

[f ≥ c] =
(
[f ≥ c] ∩ Ec,ε) ∪

(
[f ≥ c] ∩ (E − Ec,ε)

)
.

With the restriction of f to Ec,ε being continuous, the set

[f ≥ c] ∩ Ec,ε = {x ∈ Ec,ε : f(x) ≥ c}

is closed because it is the preimage of a closed set by a continuous function.

Moreover, by monotonicity of the Lebesgue outer measure, we have

µe
(
[f ≥ c] ∩ (E − Ec,ε)

)
≤ µe(E − Ec,ε) = µ(E − Ec,ε) ≤ ε.

Recall that Proposition 12.4 of Chapter II characterizes the Lebesgue measurability of
bounded sets in terms of the Lebesgue outer measure µe: a bounded set A is Lebesgue
measurable if and only if for every ε > 0 there exists a closed set Ac,ε such that Ac,ε ⊂ A
and µe(A− Ac,ε) ≤ ε.

For A = [f ≥ c] and Ac,ε = [f ≥ c] ∩ Ec,ε we have

A− Ac,ε = [f ≥ c]−
(
[f ≥ c] ∩ Ec,ε

)
= [f ≥ c] ∩ (E − Ec,ε)

where µe(A− Ac,ε) = µ([f ≥ c] ∩ (E − Ec,ε)) ≤ ε,

This satisfies the characterization of measurability, and so [f ≥ c] is measurable. �

Corollary. For a bounded Lebesgue measurable set E in RN , every continuous function
f : E → R is measurable.

Proof. For a bounded Lebesgue measurable set E and every ε > 0 there is by Proposition
12.4 a closed set Ec,ε such that Ec,ε ⊂ E and µ(E − Ec,ε) ≤ ε.

Since f : E → R is continuous, the restriction of f to Ec,ε is also continuous, and hence
f is quasi-continuous.

By Lusin’s Theorem, the the continuous function f : E → R is measurable. �

Homework Problem 27A. Prove that the difference of two quasi-continuous functions
is quasi-continuous.


