
Math 541 Lecture #28
III.6: Integral of Simple Functions

III.7: The Lebesgue Integral of Nonnegative Functions

§6: Integral of Simple Functions. For a measure space {X,A, µ} let E ∈ A.

For A ∈ A and α ∈ R we define the Lebesgue integral of αχA to be∫
E

αχA dµ =

{
αµ(E ∩ A) if α 6= 0,

0 if α = 0.

The first case is well-defined as an element of R∗ for all α ∈ R−{0} because µ(E∩A) ∈ R∗;
it is possible for αµ(E ∩ A) =∞, and his happens when µ(E ∩ A) =∞ and α 6= 0.

The second case hides the assumption 0 · ∞ = 0, i.e., 0 · µ(E ∩ A) = 0 even when
µ(E ∩ A) =∞.

So we may simplify the definition of the Lebesgue integral of αχA to∫
E

αχA dµ = αµ(E ∩ A)

with the understanding that 0 · ∞ = 0.

Let f : E → R∗ be a nonnegative simple function with the canonical representation

f =
n∑
i=1

aiχEi
,

where {a1, a2, . . . , an} are the distinct values in the range of f and E1, E2, . . . , En are
mutually disjoint measurable sets whose union is E.

The Lebesgue integral of f is defined by∫
E

f dµ =
n∑
i=1

∫
E

aiχEi
dµ =

n∑
i=1

aiµ(E ∩ Ei) =
n∑
i=1

aiµ(Ei).

This could be finite or infinite.

If the Lebesgue integral of f is finite, we say that f is Lebesgue integrable in E.

We note for a nonnegative simple f : E → R∗ that is integrable, that [f > 0] has finite
measure, for if µ([f > 0]) =∞, then for some positive image value ai of f the measurable
set Ei would have to have infinite Lebesgue measure, and hence∫

E

f dµ =
n∑
i=1

aiµ(Ei) =∞.

We have defined the Lebesgue integral of a nonnegative simple function f in terms of a
canonical representation of f .



What is the Lebesgue integral of a nonnegative simple function

f =
m∑
i=1

biχFi

not assumed to be in canonical form?

Without loss of generality we may assume that the measurable sets F1, F2, . . . , Fm are
pairwise disjoint and whose union is E.

The values {b1, b2, . . . , bm} of f are not assumed to be distinct.

Suppose that there are n distinct image values of f , which WLOG we may assume are
b1, b2, . . . , bn for n ≤ m.

We put f into canonical form by setting

Ei =
⋃
{Fj : bj = bi}, i = 1, 2, . . . , n.

Then

f =
n∑
i=1

biχEi

is a canonical representation of f for which∫
E

f dµ =
n∑
i=1

biµ(Ei) =
n∑
i=1

bi
∑

{j:bj=bi}

µ(Fj) =
m∑
j=1

bjµ(Fj).

Thus the integral is independent of the representation of the the nonnegative simple
function.

The following two properties of Lebesgue integration are Homework problems.

(1) For nonnegative simple functions f, g : E → R∗, if f ≤ g a.e. in E, then∫
E

f dµ ≤
∫
E

g dµ.

(2) For Lebesgue integrable nonnegative simple functions f, g : E → R∗, we have∫
E

(αf + βg)dµ = α

∫
E

f dµ+ β

∫
E

g dµ

for all α, β ∈ R.

§7: The Lebesgue Integral of Nonnegative Functions. For a measurable non-
negative function f : E → R∗, let Sf denote the collection of all nonnegative simple
functions ζ : E → R such that ζ ≤ f .

Since ζ = 0 satisfies ζ ≤ f , the collection Sf is nonempty.

The Lebesgue integral of f over E is defined to be∫
E

f dµ = sup
ζ∈Sf

∫
E

ζ dµ.



The supremum could be finite or infinite, but it always exists.

What is the difference between the Lebesgue integral and the Riemann integral? In the
latter we partition the domain of f while in the former we partition the range of f .

A nonnegative measurable function f : E → R∗ is Lebesgue integrable if∫
E

f dµ <∞.

For example, if µ is the counting measure on N, then a nonnegative simple function
f : N → [0,∞] (a extended real-valued nonnegative sequence) is Lebesgue integrable if
and only if the series of nonnegative terms∫

E

f dµ = sup
ζ∈Sf

∫
E

ζ dµ =
∞∑
n=1

f(n)

converges to a real number (where the supremum is realized by the limit of the sequence
of partial sums of the series).

For a measurable nonpositive function f : E → R we define∫
E

f dµ = −
∫
E

(−f)dµ (f ≤ 0).

If f, g : E → R∗ are measurable and nonnegative with f ≤ g a.e. in E, then Sf ⊂ Sg, so
that ∫

E

f dµ ≤
∫
E

g dµ.

A measurable function f : E → R∗ is Lebesgue integrable if |f | is Lebesgue integrable.

From the decomposition f = f+ − f− where

f+ =
|f |+ f

2
, f− =

|f | − f
2

,

we have, since f ≤ |f | and −f ≤ |f | that

f+ ≤ |f |+ |f |
2

= |f |, f− ≤ |f |+ |f |
2

= |f |.

Thus if f is Lebesgue integrable, then f+ and f− are Lebesgue integrable because∫
E

f+ dµ ≤
∫
E

|f |dµ <∞,
∫
E

f− dµ ≤
∫
E

|f |dµ <∞.

For a Lebesgue integrable function f : E → R∗ we set∫
E

f dµ =

∫
E

f+ dµ−
∫
E

f− dµ.



If E ′ ⊂ E is measurable and f : E → R∗ is Lebesgue integrable, then fχE′ (the restriction
of f to E ′) is Lebesgue integrable and∫

E′
f dµ =

∫
E

fχE′ dµ.

For a measurable f : E → R∗ we set∫
E

f dµ =∞ if

∫
E

f+ dµ =∞ and

∫
E

f− dµ <∞,

and ∫
E

f dµ = −∞ if

∫
E

f+ dµ <∞ and

∫
E

f− dµ =∞.

We leave ∫
E

f dµ undefined if

∫
E

f+ dµ =∞ and

∫
E

f− dµ =∞.


