Math 541 Lecture #31
IT1.10: Convergence Theorems
II1.11: Absolute Continuity of the Integral

On a measure space { X, A, u}, Fatou’s Lemma and the Monotone Convergence Theorem
hold in other situations.

Proposition 10.1. For £ € A, let g : £ — R* be integrable. For a sequence {f,} of
extended real-valued measurable functions on F| if f,, > g a.e. in E for all n € N, then

/ liminf f,, dp < lim inf/ fn dp.
E E

Proof. By hypothesis, the measurable functions { f, — g} are nonnegative.

Applying Fatou’s Lemma to the sequence {f, — g} gives

/ liminf(f, —g) du < liminf/ (fn —9) dp.
E

E

The left-hand side of this is

/ liminf(f, —g) du = /{(liminf fn) — g} du
E E

:/liminffn d,u—/g du,
E E
while the right-hand side is

liminf/(fn—g) dp = lim inf (/ fndu—/gdu>
E E E
:hminf/fn du—/gd,u.
E E

/liminffn d,u—/gdugliminf/fn du—/gdu
E E E E

which implies because g is Lebesgue integrable that

Thus

/ liminf f,, dp < lim inf/ fn du,
E E

giving the result. U
Proposition 10.2. For a sequence { f,} of measurable nonnegative functions on £ € A,

there holds
In d,LL:/ fn | dp.



Proof. The sequence of partial sums

is a monotone nondecreasing sequence of measurable nonnegative functions.

By the Monotone Convergence Theorem we have

lim [ g,dp= / lim g, du.
E E?’L*)OO

n—oo

For the left-hand side we have
lim [ ¢, du= lim / fidu
LDy
=3 [ fan
i=1 v E
while for the right-hand side we have

lim g,du —/ lim fi| du

Ee) -

This gives the result.

Now for one of the most useful and far-reaching convergence results for Lebesgue inte-

gration.

Theorem 10.3 (Lebesgue’s Dominated Convergence Theorem). Let {f,} be
a sequence of Lebesgue integrable functions on E that converges pointwise to f, i.e.,

f(x) = lim f,(x), = € E.

n—oo

If there is a Lebesgue integrable function ¢ : E — R* such that

|fu] < gae in E foralln € N

(the sequence {f,} is dominated by g), then the limit function f is Lebesgue integrable

and

lim [ f, du :/ lim f, du.
E En—)oo

n—oo

Proof. The limit function is measurable because lim f,, = limsup f,,.



Since f = lim f,, then |f| =lim |f,|.

By Fatou’s Lemma and |f,| < g a.e. in E, we have

[ s dn= [ timif]

:/1iminf|fn| du

E

§1iminf/ | ful due
E

gliminf/ lg| du
B

=/|9|du<oo
E

Thus the limit function f is Lebesgue integrable.
Since —f < | ful < g and f, < |fu] < g we have that

g+ fn>0and g— f, >0 ae. in E.

Applying Fatou’s Lemma to the sequences {g + f,} and {g — f.} gives

/gdu+/fdu:/liminf(g+fn) du
E E E
Sliminf/(g—i-fn) du
E
:/gd,u+liminf/fn du,
E E
/gdu—/fdu—/liminf(g—fn) dp
E E E
< liminf/(g—fn) dp
E

= / g d,u—lirnsup/ fn dp.
E E
Since g is integrable, its integral is finite and cancels to give
/ fdu < liminf/ fn du,
E E

—/fd,ug—limsup/fn du.
E E

This imply that
limsup/ fn dp < / fdu < liminf/ fn dpu.
E E E



Since liminf [, f,, dp < limsup [, f. dp, we have that

(/f@émmﬁ/ﬁMNSMmm/ﬁJuﬁ/f@u
F F E F

liminf/ fn dyu = limsup/ fn dp.
E E

and so

Therefore,
lim/ fn dp exists and equals / fdu= / lim f,, dpu.
E E E

This completes the proof. U

§11: Absolute Continuity of the Integral. For an integrable function f : E — R*,
does the value of [, |f| du go to zero as pu(€) goes to zero?

Theorem 11.1 (Vitali). Let E be measurable, and f : E — R* be integrable. For
every € > 0 there exists > 0 such that for every measurable subset £ of E satisfying

w(€) < 6, we have
/ fldu<e
£

Proof. Since we are integrating |f|, we may assume that f > 0.

For n € N, define a sequence { f,,} by
ﬁmﬁ:{ﬂm if f(x) <n,

n if f(x) > n.

Then {f,} is monotone nondecreasing sequence of measurable functions, bounded above
by f, that converges pointwise to f.

Thus for each n € N we have

énwséfm

And by the Monotone Convergence Theorem we also have

n—oo

lim | f,du= / f du.
E E

Since f is integrable, we have [, f du < co.
Thus for € > 0 there exists n. € N such that

/Efnedu>/Efdu—§~

[ =) dn<s

This says that
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Choose
€
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C on,.

Then for every measurable subset £ of E satisfying u(€) < & we have
= [t = h do
£

:Afne d/L—i-/g(f_fne) dp
gémw+éﬁ—hﬂﬂ

< neu€) + 5

< € + €
Ne — = €.
=Nelg, ) T27°

This gives the result.



