
Math 541 Lecture #31
III.10: Convergence Theorems

III.11: Absolute Continuity of the Integral

On a measure space {X,A, µ}, Fatou’s Lemma and the Monotone Convergence Theorem
hold in other situations.

Proposition 10.1. For E ∈ A, let g : E → R∗ be integrable. For a sequence {fn} of
extended real-valued measurable functions on E, if fn ≥ g a.e. in E for all n ∈ N, then∫

E

lim inf fn dµ ≤ lim inf

∫
E

fn dµ.

Proof. By hypothesis, the measurable functions {fn − g} are nonnegative.

Applying Fatou’s Lemma to the sequence {fn − g} gives∫
E

lim inf(fn − g) dµ ≤ lim inf

∫
E

(fn − g) dµ.

The left-hand side of this is∫
E

lim inf(fn − g) dµ =

∫
E

{(lim inf fn)− g} dµ

=

∫
E

lim inf fn dµ−
∫
E

g dµ,

while the right-hand side is

lim inf

∫
E

(fn − g) dµ = lim inf

(∫
E

fndµ−
∫
E

g dµ

)
= lim inf

∫
E

fn dµ−
∫
E

g dµ.

Thus ∫
E

lim inf fn dµ−
∫
E

g dµ ≤ lim inf

∫
E

fn dµ−
∫
E

g dµ

which implies because g is Lebesgue integrable that∫
E

lim inf fn dµ ≤ lim inf

∫
E

fn dµ,

giving the result. �

Proposition 10.2. For a sequence {fn} of measurable nonnegative functions on E ∈ A,
there holds

∞∑
n=1

∫
E

fn dµ =

∫
E

(
∞∑
n=1

fn

)
dµ.



Proof. The sequence of partial sums

gn =

{
n∑
i=1

fi

}
is a monotone nondecreasing sequence of measurable nonnegative functions.

By the Monotone Convergence Theorem we have

lim
n→∞

∫
E

gn dµ =

∫
E

lim
n→∞

gn dµ.

For the left-hand side we have

lim
n→∞

∫
E

gn dµ = lim
n→∞

∫
E

n∑
i=1

fi dµ

= lim
n→∞

n∑
i=1

∫
E

fi dµ

=
∞∑
i=1

∫
E

fi dµ,

while for the right-hand side we have∫
E

lim
n→∞

gndµ =

∫
E

(
lim
n→∞

n∑
i=1

fi

)
dµ

=

∫
E

(
∞∑
i=1

fi

)
dµ.

This gives the result. �

Now for one of the most useful and far-reaching convergence results for Lebesgue inte-
gration.

Theorem 10.3 (Lebesgue’s Dominated Convergence Theorem). Let {fn} be
a sequence of Lebesgue integrable functions on E that converges pointwise to f , i.e.,

f(x) = lim
n→∞

fn(x), x ∈ E.

If there is a Lebesgue integrable function g : E → R∗ such that

|fn| ≤ g a.e. in E for all n ∈ N

(the sequence {fn} is dominated by g), then the limit function f is Lebesgue integrable
and

lim
n→∞

∫
E

fn dµ =

∫
E

lim
n→∞

fn dµ.

Proof. The limit function is measurable because lim fn = lim sup fn.



Since f = lim fn, then |f | = lim |fn|.
By Fatou’s Lemma and |fn| ≤ g a.e. in E, we have∫

E

|f | dµ =

∫
E

lim |fn| dµ

=

∫
E

lim inf |fn| dµ

≤ lim inf

∫
E

|fn| dµ

≤ lim inf

∫
E

|g| dµ

=

∫
E

|g| dµ <∞

Thus the limit function f is Lebesgue integrable.

Since −fn ≤ |fn| ≤ g and fn ≤ |fn| ≤ g we have that

g + fn ≥ 0 and g − fn ≥ 0 a.e. in E.

Applying Fatou’s Lemma to the sequences {g + fn} and {g − fn} gives∫
E

g dµ+

∫
E

f dµ =

∫
E

lim inf(g + fn) dµ

≤ lim inf

∫
E

(g + fn) dµ

=

∫
E

g dµ+ lim inf

∫
E

fn dµ,∫
E

g dµ−
∫
E

f dµ =

∫
E

lim inf(g − fn) dµ

≤ lim inf

∫
E

(g − fn) dµ

=

∫
E

g dµ− lim sup

∫
E

fn dµ.

Since g is integrable, its integral is finite and cancels to give∫
E

f dµ ≤ lim inf

∫
E

fn dµ,

−
∫
E

f dµ ≤ − lim sup

∫
E

fn dµ.

This imply that

lim sup

∫
E

fn dµ ≤
∫
E

f dµ ≤ lim inf

∫
E

fn dµ.



Since lim inf
∫
E
fn dµ ≤ lim sup

∫
E
fn dµ, we have that∫

E

f dµ ≤ lim inf

∫
E

fn dµ ≤ lim sup

∫
E

fn dµ ≤
∫
E

f dµ,

and so

lim inf

∫
E

fn dµ = lim sup

∫
E

fn dµ.

Therefore,

lim

∫
E

fn dµ exists and equals

∫
E

f dµ =

∫
E

lim fn dµ.

This completes the proof. �

§11: Absolute Continuity of the Integral. For an integrable function f : E → R∗,
does the value of

∫
E |f | dµ go to zero as µ(E) goes to zero?

Theorem 11.1 (Vitali). Let E be measurable, and f : E → R∗ be integrable. For
every ε > 0 there exists δ > 0 such that for every measurable subset E of E satisfying
µ(E) < δ, we have ∫

E
|f | dµ < ε.

Proof. Since we are integrating |f |, we may assume that f ≥ 0.

For n ∈ N, define a sequence {fn} by

fn(x) =

{
f(x) if f(x) < n,

n if f(x) ≥ n.

Then {fn} is monotone nondecreasing sequence of measurable functions, bounded above
by f , that converges pointwise to f .

Thus for each n ∈ N we have ∫
E

fn dµ ≤
∫
E

f dµ.

And by the Monotone Convergence Theorem we also have

lim
n→∞

∫
E

fn dµ =

∫
E

f dµ.

Since f is integrable, we have
∫
E
f dµ <∞.

Thus for ε > 0 there exists nε ∈ N such that∫
E

fnε dµ >

∫
E

f dµ− ε

2
.

This says that ∫
E

(f − fnε) dµ <
ε

2
.



Choose
δ =

ε

2nε
.

Then for every measurable subset E of E satisfying µ(E) < δ we have∫
E
f dµ =

∫
E
(fnε + f − fnε) dµ

=

∫
E
fnε dµ+

∫
E
(f − fnε) dµ

≤
∫
E
nε dµ+

∫
E

(f − fnε) dµ

≤ nεµ(E) +
ε

2

≤ nε

(
ε

2nε

)
+
ε

2
= ε.

This gives the result. �


