Math 541 Lecture #33 III.16: Signed Measures

§16: Signed Measures. Let μ_1 and μ_2 be measures defined on the same σ -algebra \mathcal{A} . If at least of of these measures is finite, then the function

$$\mu(E) = \mu_1(E) - \mu_2(E), \ E \in \mathcal{A},$$

is well-defined because $\infty - \infty$ and $-\infty + \infty$ do not occur, and countably additive because for pairwise disjoint $\{E_n\}$ there holds

$$\mu\left(\bigcup E_n\right) = \mu_1\left(\bigcup E_n\right) - \mu_2\left(\bigcup E_n\right)$$
$$= \sum \mu_1(E_n) - \sum \mu_2(E_n)$$
$$= \sum \left(\mu_1(E_n) - \mu_2(E)\right)$$
$$= \sum \mu(E_n).$$

However, since $\mu(E)$ is not always nonnegative, we call μ a signed measure.

Integration of an integrable function f over $E \in \mathcal{A}$ also generates a signed measure because

$$\int_E f \ d\mu = \int_E f^+ \ d\mu - \int_E f^- \ d\mu.$$

Homework Problem 33A. Prove that $E \to \int_E f \ d\mu$ for f integrable is an signed measure.

A signed measure on X is an extended real-valued function μ that satisfies the following

(i) the domain of μ is a σ -algebra in X,

(ii)
$$\mu(\emptyset) = 0$$
,

- (iii) μ takes at most one of $\pm \infty$,
- (iv) μ is countable additive.

Let μ be a signed measure on a σ -algebra \mathcal{A} .

A measurable set $E \in \mathcal{A}$ is said to be positive (negative) if for all measurable subsets $A \subset E$ there holds $\mu(A) \ge 0$ ($\mu(A) \le 0$).

Some basic properties of positive (negative) sets are

- (1) the difference of two positive (negative) sets is positive (negative),
- (2) the union of two positive (negative) sets is positive (negative),
- (3) the countable union of pairwise disjoint positive (negative) sets is positive (negative),
- (4) the countable union of positive (negative) sets is positive (negative).

Homework Problem 33B. Prove these four properties for positive sets.

Lemma 16.1. Let μ be a signed measure on a σ -algebra. If $E \in \mathcal{A}$ satisfies $|\mu(E)| < \infty$, then for every measurable $A \subset E$ there holds $|\mu(A)| < \infty$.

Proof. WLOG assume that μ does not take the value ∞ .

Let $E \in \mathcal{A}$ satisfy $|\mu(E)| < \infty$.

Let A be a measurable subset of E.

Since μ does not take the value ∞ , we have $\mu(A) < \infty$.

If $\mu(A) > 0$, then $|\mu(A)| = \mu(A) < \infty$.

On the other hand, if $\mu(A) < 0$, then since $E = (E - A) \cup A$ disjointly, we have by countable additivity that

$$\mu(E) = \mu(E - A) + \mu(A).$$

If $\mu(A) = -\infty$, then as $\mu(E - A) < \infty$ (μ does not take the value ∞), we have that $\mu(E) = -\infty$, a contradiction to $|\mu(E)| < \infty$.

Hence
$$\mu(A) \neq -\infty$$
, so $|\mu(A)| < \infty$.

Proposition 16.2. Let μ be a signed measure on a σ -algebra \mathcal{A} . Every measurable set E of positive finite measure contains a positive subset A of positive measure.

Proof. If E is a positive set, then we take A = E.

If E is not a positive set, then E contains a measurable subset of negative measure.

Let n_1 be the smallest positive integer for which there exists $B_1 \subset E$ satisfying

$$\mu(B_1) \le -\frac{1}{n_1}.$$

If $A_1 = E - B_1$ is a positive set, then we take $A = A_1$.

If A_1 is not a positive set, then it contains a measurable subset of negative measure.

So there exists $B_2 \subset E - B_1$ and the smallest positive integer n_2 such that

$$\mu(B_2) \le -\frac{1}{n_2}.$$

Proceeding inductively in this fashion, if for some finite positive integer m the set

$$A_m = E - \bigcup_{j=1}^m B_j$$

is positive we are done.

If not, the induction produces two sequences of sets $\{B_j\}$ and $\{A_m\}$ and a sequence of positive integers $\{n_j\}$.

We will show that the set

$$A = \bigcap_{m=1}^{\infty} A_m = E - \bigcup_{j=1}^{\infty} B_j$$

is positive by showing that every measurable subset of A has nonnegative measure.

Since $\mu(E)$ is finite, i.e., $|\mu(E)| < \infty$, and A is a measurable subset of E, we have by Lemma 16.1 that $|\mu(A)| < \infty$, i.e., $\mu(A)$ is finite as well.

By construction the sets $\{B_j\}$ and A are measurable and pairwise disjoint and satisfy

$$E = A \cup \bigcup B_j.$$

Since the signed measure μ is countable additive, we have

$$0 < \mu(E) = \mu(A) + \sum_{j=1}^{\infty} \mu(B_j) \le \mu(A) - \sum_{j=1}^{\infty} \frac{1}{n_j}.$$

Rearranged this gives

$$\sum_{j=1}^{\infty} \frac{1}{n_j} \le \mu(A) < \infty.$$

The implied convergence of the series implies that $1/n_j \to 0$ as $j \to \infty$.

Because the terms $1/n_j > 0$, the convergent series converges to a positive quantity, implying that $\mu(A) > 0$.

Now let C be a nonempty measurable subset of A.

Then $C \subset A_j$ for all j.

Suppose $\mu(C) < 0$.

In choosing $A_1 = E - B_1$, we looked for the smallest positive integer n_1 for which there is $B_1 \subset E$ satisfying $\mu(B_1) \leq -1/n_1$.

If $\mu(C) \leq -1/n_1$, then we could have chosen $B_1 = C$, implying that $C \cap A_1 = \emptyset$, a contradiction to $C \subset A_1$, whence it must be that

$$\mu(C) > -\frac{1}{n_1} \ge -\frac{1}{n_1 - 1}$$

In choosing $A_2 = E - (B_1 \cup B_2)$, we looked for the smallest positive integer n_2 for which there is $B_2 \subset E - B_1$ satisfying $\mu(B_2) \leq -1/n_2$.

If $\mu(C) \leq -1/n_2$, then we could have chosen $B_2 = C$, implying that $C \cap A_2 = \emptyset$, a contradiction to $C \subset A_2$, whence it must be that

$$\mu(C) > -\frac{1}{n_2} \ge -\frac{1}{n_2 - 1}.$$

Continuing this argument we see for all $j \in \mathbb{N}$ that

$$\mu(C) > -\frac{1}{n_j - 1}.$$

Since $1/n_j \to 0$ as $j \to \infty$, then $1/(n_j - 1) \to 0$ as $j \to \infty$, and we contradict $\mu(C) < 0$. Therefore $\mu(C) \ge 0$, and A is a positive set.