Math 541 Lecture #34
[T1.17: The Lebesgue-Radon-Nikodym Theorem

§17: The Lebesgue-Radon-Nikodym Theorem. For two measures p and v on

the same o-algebra A, we say that v is absolutely continuous with respect to u, and write
v < p, if when p(FE) =0 for E € A, there holds v(E) = 0.

Given a measurable nonnegative f : X — R* the set function

E—>1/(E):/fdu,E€A,
E

is a measure on A that is absolutely continuous with respect to pu.

We ask for the opposite: if v < p, is there a measurable nonnegative f : X — R* such
that

v(E) = /E fdp?

The partial answer is the content of the Lebesgue-Radon-Nikodym Theorem (Lebesgue
proved it for Lebesgue measure on RY, then Radon extended it to Radon measures, and
then Nikodym extended it to general measures).

Theorem 17.1 (Lebesgue-Radon-Nikodym). Let {X, A, u} and {X, A, v} be o-
finite measure spaces. If v < u, then there is a measurable nonnegative function f :
X — R* such that

V(E):/Efdu, E e A

The function f is unique up to a set of pu-measure zero.

Some Remarks: (1) The function f here is called the Radon-Nikodym derivative, since
formally it satisfies dv = fdpu.

(2) The Theorem does not assert that f is p-integrable. This occurs if and only if v is
finite.

(3) The assumption of o-finiteness on both measures cannot be removed. You have it as
two homework problems to construct counterexamples.

Proof of the Lebesgue-Radon-Nikodym Theorem in the case that both p and v are finite
measures.

Let ® be the collection of measurable nonnegative functions ¢ : X — R* that satisfy
/ o dy <v(E) forall E e A.
E

The collection ® is nonempty since it contains the zero function.



For two ¢1, vy € ®, the function max{y1, w2} also belongs to @, because for any E € A,
we have

/ max{ 1, 2 }du =/ 1 dp +/ 2 dp
E EN[p1>¢2] ENfp1<es]

<v(EN[pr > @a]) + v(EN[p1 < 93]
=v(E).

Since v is finite, i.e., ¥(X) < 0o, the quantity

M:sup/godugu(X)<oo.
b

ped

Let {¢,} be a sequence in ® such that

n—oo

lim ©n dpp = M.
X
The sequence of nonnegative measurable functions

fo =max{p1,...,0n}

is nondecreasing and converges pointwise to a measurable nonnegative function f : X —
R*.

This function f belongs to ® because by the Monotone Convergence Theorem we have

/fdu: lim/fn dpu < v(E) for all E € A.
E n—oo E

To show that this f satisfies v(E) = [, f du, we consider the measure

n(E):V(E)—/Ef du, E e A.

If this measure is not the zero measure, then there is A € A such that n(A) > 0.
Since v < p, then n < p.

Thus n(A) > 0 implies by absolute continuity with respect to p that p(A) > 0 (the
contrapositive of absolute continuity of n with respect to ).

Since p is finite, i.e., u(X) < oo, there exists € > 0 such that

§(A) =n(A) —eu(A) > 0.
The function ¢ : A — R* defined by

is a signed measure on A.



By Proposition 16.2, the set A contains a positive subset Ay, so that
E(E)=n(ENAy) —eu(ENAy) >0forall Ee A

Using the definition of the measure 1 we have for all £ € A that

WEOA) - [ fdu-en(En ) 20,

ENAg

or rewritten, that for all £ € A that

/ fdp+en(ENAy) <v(ENA).
ENAgp

This implies that the measurable nonnegative function f + ex4, belongs to ® because
for all £ € A, we have

[E(ereon)du: /EAOf du+[EmAO(f+6)du
<UE-A)+ [ fduteu(En )

ENAg
<v(E - Ag) +v(EN Ay)
— (E).

But f + exa, € ® contradicts the definition of M because

/(f+eon)du=/ f du+e/ XA, dpp = M + €pu(Ag) > M.
X X X
Thus 7 is the zero measure, and hence
v(E) = / fduforal E e A.
E
Suppose g : X — R* is another measurable nonnegative function for which

v(E) = / g du, for all E € A.
E

To show that f = g a.e. with respect to u, we consider for n € N the sets

Anz{xeX:ﬂx)—g(x)zl}.

n

Then for all n € N we have

ozym@_mAJ:/

An

(f —g)du 2/ L= ulddn)

Ap n n
These implies that p(A,) = 0 so that f > g a.e. with respect to p.

A similar argument shows that f < g a.e. with respect to u, so that f = g a.e. with
respect to u. U



