
Math 541 Lecture #34
III.17: The Lebesgue-Radon-Nikodym Theorem

§17: The Lebesgue-Radon-Nikodym Theorem. For two measures µ and ν on
the same σ-algebra A, we say that ν is absolutely continuous with respect to µ, and write
ν � µ, if when µ(E) = 0 for E ∈ A, there holds ν(E) = 0.

Given a measurable nonnegative f : X → R∗, the set function

E → ν(E) =

∫
E

f dµ, E ∈ A,

is a measure on A that is absolutely continuous with respect to µ.

We ask for the opposite: if ν � µ, is there a measurable nonnegative f : X → R∗ such
that

ν(E) =

∫
E

f dµ?

The partial answer is the content of the Lebesgue-Radon-Nikodym Theorem (Lebesgue
proved it for Lebesgue measure on RN , then Radon extended it to Radon measures, and
then Nikodym extended it to general measures).

Theorem 17.1 (Lebesgue-Radon-Nikodym). Let {X,A, µ} and {X,A, ν} be σ-
finite measure spaces. If ν � µ, then there is a measurable nonnegative function f :
X → R∗ such that

ν(E) =

∫
E

f dµ, E ∈ A.

The function f is unique up to a set of µ-measure zero.

Some Remarks: (1) The function f here is called the Radon-Nikodym derivative, since
formally it satisfies dν = fdµ.

(2) The Theorem does not assert that f is µ-integrable. This occurs if and only if ν is
finite.

(3) The assumption of σ-finiteness on both measures cannot be removed. You have it as
two homework problems to construct counterexamples.

Proof of the Lebesgue-Radon-Nikodym Theorem in the case that both µ and ν are finite
measures.

Let Φ be the collection of measurable nonnegative functions ϕ : X → R∗ that satisfy∫
E

ϕ dµ ≤ ν(E) for all E ∈ A.

The collection Φ is nonempty since it contains the zero function.



For two ϕ1, ϕ2 ∈ Φ, the function max{ϕ1, ϕ2} also belongs to Φ, because for any E ∈ A,
we have ∫

E

max{ϕ1, ϕ2}dµ =

∫
E∩[ϕ1≥ϕ2]

ϕ1 dµ+

∫
E∩[ϕ1<ϕ2]

ϕ2 dµ

≤ ν
(
E ∩ [ϕ1 ≥ ϕ2]

)
+ ν
(
E ∩ [ϕ1 < ϕ2]

)
= ν(E).

Since ν is finite, i.e., ν(X) <∞, the quantity

M = sup
ϕ∈Φ

∫
X

ϕ dµ ≤ ν(X) <∞.

Let {ϕn} be a sequence in Φ such that

lim
n→∞

∫
X

ϕn dµ = M.

The sequence of nonnegative measurable functions

fn = max{ϕ1, . . . , ϕn}

is nondecreasing and converges pointwise to a measurable nonnegative function f : X →
R∗.
This function f belongs to Φ because by the Monotone Convergence Theorem we have∫

E

f dµ = lim
n→∞

∫
E

fn dµ ≤ ν(E) for all E ∈ A.

To show that this f satisfies ν(E) =
∫
E
f dµ, we consider the measure

η(E) = ν(E)−
∫
E

f dµ, E ∈ A.

If this measure is not the zero measure, then there is A ∈ A such that η(A) > 0.

Since ν � µ, then η � µ.

Thus η(A) > 0 implies by absolute continuity with respect to µ that µ(A) > 0 (the
contrapositive of absolute continuity of η with respect to µ).

Since µ is finite, i.e., µ(X) <∞, there exists ε > 0 such that

ξ(A) = η(A)− εµ(A) > 0.

The function ξ : A → R∗ defined by

ξ(E) = η(E)− εµ(E)

is a signed measure on A.



By Proposition 16.2, the set A contains a positive subset A0, so that

ξ(E) = η(E ∩ A0)− εµ(E ∩ A0) ≥ 0 for all E ∈ A.

Using the definition of the measure η we have for all E ∈ A that

ν(E ∩ A0)−
∫
E∩A0

f dµ− εµ(E ∩ A0) ≥ 0,

or rewritten, that for all E ∈ A that∫
E∩A0

f dµ+ εµ(E ∩ A0) ≤ ν(E ∩ A0).

This implies that the measurable nonnegative function f + εχA0 belongs to Φ because
for all E ∈ A, we have∫

E

(f + εχA0)dµ =

∫
E−A0

f dµ+

∫
E∩A0

(f + ε)dµ

≤ ν(E − A0) +

∫
E∩A0

f dµ+ εµ(E ∩ A0)

≤ ν(E − A0) + ν(E ∩ A0)

= ν(E).

But f + εχA0 ∈ Φ contradicts the definition of M because∫
X

(f + εχA0)dµ =

∫
X

f dµ+ ε

∫
X

χA0 dµ = M + εµ(A0) > M.

Thus η is the zero measure, and hence

ν(E) =

∫
E

f dµ for all E ∈ A.

Suppose g : X → R∗ is another measurable nonnegative function for which

ν(E) =

∫
E

g dµ, for all E ∈ A.

To show that f = g a.e. with respect to µ, we consider for n ∈ N the sets

An =

{
x ∈ X : f(x)− g(x) ≥ 1

n

}
.

Then for all n ∈ N we have

0 = ν(An)− ν(An) =

∫
An

(f − g)dµ ≥
∫
An

1

n
dµ =

µ(An)

n
.

These implies that µ(An) = 0 so that f ≥ g a.e. with respect to µ.

A similar argument shows that f ≤ g a.e. with respect to µ, so that f = g a.e. with
respect to µ. �


