
Math 541 Lecture #35
V.1: Functions in Lp(E) and their Norms

V.3: The Hölder and Minkowski Inequalities, Part I

V.1: Functions in Lp(E) and their Norms. The development of the theory of Lp

spaces is based in part on the notion of convexity.

Definition. A real-valued function ϕ defined on an open interval (a, b) is convex if

ϕ
(
(1− λ)x+ λy

)
≤ (1− λ)ϕ(x) + λϕ(y)

holds for all x, y ∈ (a, b) and for all λ ∈ [0, 1].

Proposition. For a real p ≥ 1, the function ϕ(t) = tp defined on (0,∞) is convex.

Homework Problem 35A. Give a proof of this Proposition.

The Space Lp(E) for p ∈ [1,∞). Let {X,A, µ} be a measure space, E ∈ A, and
p ≥ 1 a real number.

A measurable function f : E → R∗ is said to be in Lp(E) if |f |p is integrable on E.

The Lp(E) norm of a measurable function f : E → R∗ is

‖f‖p =

(∫
E

|f |p dµ
)1/p

.

A measurable function f : E → R∗ is in Lp(E) if and only if ‖f‖p <∞.

The Lp-norm satisfies ‖f‖p ≥ 0, with ‖f‖p = 0 if and only if f = 0 a.e. in E.

The Lp-norm also satisfies for all α ∈ R,

‖αf‖p =

(∫
E

|αf | dµ
)1/p

= |α|
(∫

E

|f |dµ
)1/p

= |α| ‖f‖p.

This says that the scalar multiple αf is in Lp(E) for all α ∈ R when f ∈ Lp(E).

For f, g ∈ Lp(E) and α, β ∈ R we have by the convexity of ϕ(t) = tp on (0,∞) that(
|f |+ |g|

2

)p

≤ |f |
p

2
+
|g|p

2
.

[When either f(x) = 0 or g(x) = 0, the inequality holds trivially.]

Moving the factor of (1/2)p from the left-hand side to the right-hand side gives

(|f |+ |g|)p ≤ 2p−1(|f |p + |g|p
)
.

By this and the triangle inequality we have that

‖f + g‖pp =

∫
E

|f + g|p dµ ≤
∫
E

(
|f |+ |g|

)p
dµ

≤
∫
E

2p−1 (|f |p + |g|p) dµ = 2p−1‖f‖pp + 2p−1‖g‖pp.



This shows that the sum of two Lp(E) functions is an Lp(E) function.

Proposition. For each p ∈ [1,∞), the set Lp(E) is a linear space.

We will show later that Lp(E) is a normed linear space (we haven’t yet established the
triangle inequality for the Lp(E) norm).

The Space L∞(E). A measurable function f : E → R∗ is said to be in L∞(E) is there
exists a positive real number M such that |f(x)| ≤M for a.e. x ∈ E.

To define a “norm” on L∞(E), we define for f : E → R∗ the quantity

ess sup
E

f =

{
inf{k ∈ R : µ([f > k]) = 0} if there is k ∈ R such that µ([f > k]) = 0,

∞ otherwise.

This quantity is called the essential supremum of f .

The L∞(E) norm of a measurable f : E → R∗ is

‖f‖∞ = ess sup
E
|f |.

A measurable function f : E → R∗ is in L∞(E) if and only if ‖f‖∞ <∞.

For f ∈ L∞(E) the quantity ‖f‖∞ is the unique real number such that for all ε > 0 we
have that

µ({x ∈ E : |f(x)| ≥ ‖f‖∞ + ε}) = 0,

and
µ({x ∈ E : |f(x)| ≥ ‖f‖∞ − ε}) > 0.

For f ∈ L∞(E) and nonzero α ∈ R, we compute the value of ‖αf‖∞: for ε > 0 we have

{x ∈ E : |f(x)| ≥ ‖f‖∞ + ε/|α|} = {x ∈ E : |α| |f(x)| ≥ |α| ‖f‖∞ + ε}
= {x ∈ E : |(αf)(x)| ≥ |α| ‖f‖∞ + ε},

where the first and hence all the sets have measure zero, so that ‖αf‖∞ ≤ |α| ‖f‖∞; this
shows that αf ∈ L∞(E); also we have

{x ∈ E : |(αf)(x)| ≥ ‖αf‖∞ + ε} = {x ∈ E : |α| |f(x)| ≥ ‖αf‖∞ + ε}
= {x ∈ E : |f(x)| ≥ ‖αf‖∞/|α|+ ε/|α|},

where the first and hence all the sets have measure zero, so that ‖f‖∞ ≤ ‖αf‖∞/|α|.
Thus

‖αf‖∞ = |α| ‖f‖∞.
For α = 0 we have that |αf(x)| = |α| |f(x)| = 0 · |f(x)| = 0 for all x ∈ E, and so
‖αf‖∞ = 0 = |α| ‖f‖∞.

Thus ‖αf‖∞ = |α| ‖f‖∞ for all α ∈ R and all f ∈ L∞(E).

For f ∈ L∞(E), the quantity ‖f‖∞ is the smallest real number such that for all λ ≥ ‖f‖∞
we have

|f(x)| ≤ λ for a.e. x ∈ E.



The L∞(E) norm satisfies ‖f‖∞ ≥ 0, with ‖f‖∞ = 0 if and only if f = 0 a.e. in E.

For f, g ∈ L∞(E) we have that

|f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ ‖f‖∞ + ‖g‖∞ <∞,

for a.e. x ∈ E, so that f + g ∈ L∞(E).

Proposition. The set L∞(E) is a linear space.

We will show later that L∞(E) is a normed linear space (we haven’t yet established the
triangle inequality for the L∞(E) norm).

§3: The Hölder and Minkowski Inequalities. We show that the Lp(E) norm ‖f‖p
satisfies the triangle inequality for all 1 ≤ p ≤ ∞.

The case of p = 1 follows because

‖f + g‖1 =

(∫
E

|f + g|1 dµ
)1/1

=

∫
E

|f + g| dµ

≤
∫
E

(|f |+ |g|) dµ

=

∫
E

|f | dµ+

∫
E

|g| dµ

=

(∫
E

|f |1 dµ
)1/1

+

(∫
E

|g|1 dµ
)1/1

= ‖f‖1 + ‖g‖1.

The case of p =∞ follows because ‖f + g‖∞ is the smallest real number such that

|f(x) + g(x)| ≤ ‖f + g‖∞

for a.e. x ∈ E, and

|f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ ‖f‖∞ + ‖g‖∞

for a.e. x ∈ E, implying that

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.

Obtaining the cases 1 < p <∞ requires much more work.


