Math 541 Lecture #35
V.1: Functions in L”(E) and their Norms
V.3: The Holder and Minkowski Inequalities, Part I

V.1: Functions in LP(FE) and their Norms. The development of the theory of L?
spaces is based in part on the notion of convexity.

Definition. A real-valued function ¢ defined on an open interval (a,b) is convex if

p((1 =Nz +My) < (1= Ne(@) +Ae(y)
holds for all z,y € (a,b) and for all X € [0, 1].
Proposition. For a real p > 1, the function ¢(t) = t? defined on (0, 00) is convex.
Homework Problem 35A. Give a proof of this Proposition.

The Space LP(E) for p € [1,00). Let {X, A, u} be a measure space, E € A, and
p > 1 a real number.

A measurable function f : E — R* is said to be in LP(F) if | f|? is integrable on E.

The LP(F) norm of a measurable function f: E — R* is

1/p
£l = (/E|f|” du) |

A measurable function f: E — R* is in LP(F) if and only if || f||, < oo.
The LP-norm satisfies || f||, > 0, with || f||, = 0 if and only if f =0 a.e. in E.

The LP-norm also satisfies for all o € R,

1/p 1/p
||af||p=</E af] du) ~ o (/E |f|du) — lal £,

This says that the scalar multiple af is in LP(E) for all « € R when f € LP(E).
For f,g € LP(F) and «, 5 € R we have by the convexity of ¢(t) = t? on (0, 00) that

I+ 19" _ 1P Lgl?
(T) =5ty

[When either f(z) =0 or g(z) = 0, the inequality holds trivially.]
Moving the factor of (1/2)? from the left-hand side to the right-hand side gives

(1f1+1gD7 < 277 (IF17 + 1)

By this and the triangle inequality we have that
£+l = [ 17 +al du< [ (51410 do
E E

< / (I fIP + |glP) dp = 2P7H|FIID + 2P| g]IE.
E



This shows that the sum of two LP(FE) functions is an LP(FE) function.
Proposition. For each p € [1,0), the set LP(E) is a linear space.

We will show later that LP(E) is a normed linear space (we haven’t yet established the
triangle inequality for the LP(E) norm).

The Space L*(FE). A measurable function f : £ — R* is said to be in L=(E) is there
exists a positive real number M such that |f(z)| < M for a.e. x € E.

To define a “norm” on L*°(E), we define for f : E — R* the quantity

{inf{k e R:pu([f > k]) =0} if there is k € R such that u([f > k]) =0,

esssup f = i
E otherwise.

This quantity is called the essential supremum of f.
The L*°(E) norm of a measurable f : F — R* is

[flloc = ess sup |f].
E

A measurable function f: F — R* is in L>°(F) if and only if || f||oc < o0.

For f € L*°(FE) the quantity || f]|« is the unique real number such that for all € > 0 we
have that

p({z € E:[f(x)] = [[fll« +€}) =0,
and

p{z e Ex[f(0)] = |fllc — €}) > 0.

For f € L*°(FE) and nonzero a € R, we compute the value of ||af||w: for € > 0 we have

{ze B:|f@)] 2 fllec +¢/lal} = {z € Exlal [f(2)] = [a] |[flle + €}
={ze E:f(af)(@)| = lal [[flle + e},

where the first and hence all the sets have measure zero, so that || f||e < || || f]|o; this
shows that af € L>®°(FE); also we have

{ze E:f(af)(@)] = lafle+ep ={z e E:|af [f(2)] = laflo + €}
={z e E:|f(@)] = [lafllw/lol + €/lal},

where the first and hence all the sets have measure zero, so that || f||oc < ||laf]|eo/]c¥|-

Thus
leeflloo = laxf [1flloo-
For a = 0 we have that |af(z)| = |a| |f(z)] = 0 |f(z)] = 0 for all z € E, and so
leeflloo = 0= [a] [[lloc-
Thus ||af]le = || || flle for all @ € R and all f € L>(E).
For f € L*>®(FE), the quantity || f||o is the smallest real number such that for all A > || f|| s

we have
|f(x)| < X for ae. x € E.



The L*(FE) norm satisfies || f|l« > 0, with || f||« = 0 if and only if f =0 a.e. in FE.
For f,g € L>®(F) we have that
[F(2) + g(@)] < [f(2)] + [g(2)] < [Iflleo + N9l < 00,

for a.e. x € E, so that f 4+ g € L>®(F).
Proposition. The set L°°(FE) is a linear space.

We will show later that L>(F) is a normed linear space (we haven’t yet established the
triangle inequality for the L°°(E) norm).

§3: The Holder and Minkowski Inequalities. We show that the LP(E) norm || ]|,
satisfies the triangle inequality for all 1 < p < oco.

The case of p =1 follows because

1/1
1 +glh = (/E|f+g|1 du)

— [ 1+l du
< /E (1] + 1]) du

Z/Elf\ du+/E|g| dp
- (/E|f|1 dﬂ)l/lJr (/E " du)m

= [Ifllx +llglh-
The case of p = oo follows because ||f + g||o is the smallest real number such that

|f(x) +g(x)| < [If + gl

for a.e. x € E, and

[f(2) + g(@)] < [f(@)] + [g(@)] < [|flloo + llgllo

for a.e. x € E, implying that

1f + glloo < M1flloe + [19llcc-

Obtaining the cases 1 < p < oo requires much more work.



