Math 541 Lecture #35 V.1: Functions in $L^p(E)$ and their Norms V.3: The Hölder and Minkowski Inequalities, Part I

V.1: Functions in $L^{p}(E)$ and their Norms. The development of the theory of L^{p} spaces is based in part on the notion of convexity.

Definition. A real-valued function φ defined on an open interval (a, b) is **convex** if

$$\varphi((1-\lambda)x + \lambda y) \le (1-\lambda)\varphi(x) + \lambda\varphi(y)$$

holds for all $x, y \in (a, b)$ and for all $\lambda \in [0, 1]$.

Proposition. For a real $p \ge 1$, the function $\varphi(t) = t^p$ defined on $(0, \infty)$ is convex.

Homework Problem 35A. Give a proof of this Proposition.

The Space $L^{p}(E)$ for $p \in [1, \infty)$. Let $\{X, \mathcal{A}, \mu\}$ be a measure space, $E \in \mathcal{A}$, and $p \geq 1$ a real number.

A measurable function $f : E \to \mathbb{R}^*$ is said to be in $L^p(E)$ if $|f|^p$ is integrable on E. The $L^p(E)$ norm of a measurable function $f : E \to \mathbb{R}^*$ is

$$||f||_p = \left(\int_E |f|^p \ d\mu\right)^{1/p}$$

A measurable function $f: E \to \mathbb{R}^*$ is in $L^p(E)$ if and only if $||f||_p < \infty$. The L^p -norm satisfies $||f||_p \ge 0$, with $||f||_p = 0$ if and only if f = 0 a.e. in E. The L^p -norm also satisfies for all $\alpha \in \mathbb{R}$,

$$\|\alpha f\|_{p} = \left(\int_{E} |\alpha f| \ d\mu\right)^{1/p} = |\alpha| \left(\int_{E} |f| d\mu\right)^{1/p} = |\alpha| \ \|f\|_{p}.$$

This says that the scalar multiple αf is in $L^p(E)$ for all $\alpha \in \mathbb{R}$ when $f \in L^p(E)$. For $f, g \in L^p(E)$ and $\alpha, \beta \in \mathbb{R}$ we have by the convexity of $\varphi(t) = t^p$ on $(0, \infty)$ that

$$\left(\frac{|f|+|g|}{2}\right)^p \le \frac{|f|^p}{2} + \frac{|g|^p}{2}.$$

[When either f(x) = 0 or g(x) = 0, the inequality holds trivially.]

Moving the factor of $(1/2)^p$ from the left-hand side to the right-hand side gives

$$(|f| + |g|)^p \le 2^{p-1} (|f|^p + |g|^p).$$

By this and the triangle inequality we have that

$$\begin{split} \|f+g\|_p^p &= \int_E |f+g|^p \ d\mu \le \int_E \left(|f|+|g|\right)^p \ d\mu \\ &\le \int_E 2^{p-1} \left(|f|^p+|g|^p\right) \ d\mu = 2^{p-1} \|f\|_p^p + 2^{p-1} \|g\|_p^p \end{split}$$

This shows that the sum of two $L^{p}(E)$ functions is an $L^{p}(E)$ function.

Proposition. For each $p \in [1, \infty)$, the set $L^p(E)$ is a linear space.

We will show later that $L^{p}(E)$ is a normed linear space (we haven't yet established the triangle inequality for the $L^{p}(E)$ norm).

The Space $L^{\infty}(E)$. A measurable function $f: E \to \mathbb{R}^*$ is said to be in $L^{\infty}(E)$ is there exists a positive real number M such that $|f(x)| \leq M$ for a.e. $x \in E$.

To define a "norm" on $L^{\infty}(E)$, we define for $f: E \to \mathbb{R}^*$ the quantity

$$\operatorname{ess\,sup}_{E} f = \begin{cases} \inf\{k \in \mathbb{R} : \mu([f > k]) = 0\} & \text{if there is } k \in \mathbb{R} \text{ such that } \mu([f > k]) = 0, \\ \infty & \text{otherwise.} \end{cases}$$

This quantity is called the **essential supremum** of f. The $L^{\infty}(E)$ **norm** of a measurable $f : E \to \mathbb{R}^*$ is

$$||f||_{\infty} = \operatorname{ess\,sup}_{E} |f|.$$

A measurable function $f: E \to \mathbb{R}^*$ is in $L^{\infty}(E)$ if and only if $||f||_{\infty} < \infty$.

For $f \in L^{\infty}(E)$ the quantity $||f||_{\infty}$ is the unique real number such that for all $\epsilon > 0$ we have that

$$\mu(\{x \in E : |f(x)| \ge \|f\|_{\infty} + \epsilon\}) = 0,$$

and

$$\mu(\{x \in E : |f(x)| \ge \|f\|_{\infty} - \epsilon\}) > 0.$$

For $f \in L^{\infty}(E)$ and nonzero $\alpha \in \mathbb{R}$, we compute the value of $\|\alpha f\|_{\infty}$: for $\epsilon > 0$ we have

$$\{ x \in E : |f(x)| \ge \|f\|_{\infty} + \epsilon/|\alpha| \} = \{ x \in E : |\alpha| \ |f(x)| \ge |\alpha| \ \|f\|_{\infty} + \epsilon \}$$

= $\{ x \in E : |(\alpha f)(x)| \ge |\alpha| \ \|f\|_{\infty} + \epsilon \},$

where the first and hence all the sets have measure zero, so that $\|\alpha f\|_{\infty} \leq |\alpha| \|f\|_{\infty}$; this shows that $\alpha f \in L^{\infty}(E)$; also we have

$$\{x \in E : |(\alpha f)(x)| \ge ||\alpha f||_{\infty} + \epsilon \} = \{x \in E : |\alpha| |f(x)| \ge ||\alpha f||_{\infty} + \epsilon \}$$
$$= \{x \in E : |f(x)| \ge ||\alpha f||_{\infty}/|\alpha| + \epsilon/|\alpha|\},$$

where the first and hence all the sets have measure zero, so that $||f||_{\infty} \leq ||\alpha f||_{\infty}/|\alpha|$. Thus

$$\|\alpha f\|_{\infty} = |\alpha| \ \|f\|_{\infty}$$

For $\alpha = 0$ we have that $|\alpha f(x)| = |\alpha| |f(x)| = 0 \cdot |f(x)| = 0$ for all $x \in E$, and so $||\alpha f||_{\infty} = 0 = |\alpha| ||f||_{\infty}$.

Thus $\|\alpha f\|_{\infty} = |\alpha| \|f\|_{\infty}$ for all $\alpha \in \mathbb{R}$ and all $f \in L^{\infty}(E)$.

For $f \in L^{\infty}(E)$, the quantity $||f||_{\infty}$ is the smallest real number such that for all $\lambda \ge ||f||_{\infty}$ we have

$$|f(x)| \leq \lambda$$
 for a.e. $x \in E$.

The $L^{\infty}(E)$ norm satisfies $||f||_{\infty} \ge 0$, with $||f||_{\infty} = 0$ if and only if f = 0 a.e. in E. For $f, g \in L^{\infty}(E)$ we have that

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty} < \infty,$$

for a.e. $x \in E$, so that $f + g \in L^{\infty}(E)$.

Proposition. The set $L^{\infty}(E)$ is a linear space.

We will show later that $L^{\infty}(E)$ is a normed linear space (we haven't yet established the triangle inequality for the $L^{\infty}(E)$ norm).

§3: The Hölder and Minkowski Inequalities. We show that the $L^p(E)$ norm $||f||_p$ satisfies the triangle inequality for all $1 \le p \le \infty$.

The case of p = 1 follows because

$$\begin{split} f + g \|_{1} &= \left(\int_{E} |f + g|^{1} d\mu \right)^{1/1} \\ &= \int_{E} |f + g| d\mu \\ &\leq \int_{E} (|f| + |g|) d\mu \\ &= \int_{E} |f| d\mu + \int_{E} |g| d\mu \\ &= \left(\int_{E} |f|^{1} d\mu \right)^{1/1} + \left(\int_{E} |g|^{1} d\mu \right)^{1/1} \\ &= \|f\|_{1} + \|g\|_{1}. \end{split}$$

The case of $p = \infty$ follows because $||f + g||_{\infty}$ is the smallest real number such that

$$|f(x) + g(x)| \le ||f + g||_{\infty}$$

for a.e. $x \in E$, and

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty}$$

for a.e. $x \in E$, implying that

$$||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}.$$

Obtaining the cases 1 requires much more work.