
Math 541 Lecture #36
V.3: The Hölder and Minkowski Inequalities, Part II

We continue towards a proof that the Lp “norms” satisfy the triangle inequality.

Two elements p, q ∈ [1,∞] are said to be conjugate if

1

p
+

1

q
= 1,

where if p = 1 then q =∞ and 1/q = 0 because as p→ 1, we have q →∞, and if q = 1,
then p =∞ and 1/p = 0 because as q → 1 we have p→∞.

For example, p = 2 and q = 2 are conjugate.

Proposition 2.1. If p, q ∈ [1,∞] are conjugate, then for all a, b ∈ R we have

|ab| ≤ |a|
p

p
+
|b|q

q
.

Proof. The inequality holds if |a| = 0 or |b| = 0 because |ab| = 0.

So suppose that |a| > 0 and |b| > 0.

The inequality holds if p = 1 because as p→ 1 we have q →∞ so that when |b| ≤ 1 we
have |b|q/q → 0 as q →∞, so that

|ab| = |a| |b| ≤ |a| ≤ |a|
1

1
+
|b|∞

∞
,

and when |b| > 1 we have |b|q/q →∞ as q →∞ (by L’Hospital’s Rule), so that

|ab| <∞ =
|a|1

1
+
|b|∞

∞
;

we have a similar conclusion when q → 1.

So we suppose that 1 < p, q <∞.

The function

s→
(
sp

p
+

1

q
− s
)
, s ≥ 0,

has an absolute minimum at s = 1 because its derivative

psp−1

p
− 1 = sp−1 − 1

has a zero at s = 1, and its second derivative

(p− 1)sp−2

is positive on s ≥ 0.



Hence for all s ≥ 0 we have

1p

p
+

1

q
− 1 ≤ sp

p
+

1

q
− s,

with equality holding only when s = 1.

Since p and q are conjugate we have

1p

p
+

1

q
− 1 = 0

so that

0 ≤ sp

p
+

1

q
− s.

This rearranges to give

s ≤ sp

p
+

1

q

with equality holding only when s = 1.

Choosing

s =
|a|
|b|q/p

in the inequality gives

|a|
|b|q/p

≤

(
|a|
|b|q/p

)p
p

+
1

q
=
|a|p

p|b|q
+

1

q
.

Multiplying the inequality through by |b|q gives

|a| |b|q

|b|q/p
≤ |a|

p

p
+
|b|q

q
.

Here
|b|q

|b|q/p
= |b|q−q/p

where, because p and q are conjugate we have

1

p
+

1

q
= 1 ⇒ q

p
+ 1 = q ⇒ q − q

p
= 1,

we have |b|q−q/p = |b|.
Therefore we obtain the inequality. �

Proposition 2.2 (Hölder’s Inequality). If f ∈ Lp(E) and g ∈ Lq(E) for conjugate
p and q, then fg ∈ L1(E) and ∫

E

|fg| dµ ≤ ‖f‖p‖g‖q.



Moreover, equality holds only if there is a constant c such that |f(x)|p = c|g(x)|q for
a.e. x ∈ E.
Proof. If either f = 0 a.e. in E or g = 0 a.e. in E, there is nothing to show.

We assume WLOG that f ≥ 0 and g ≥ 0 with neither equal to 0 a.e. in E, so that
‖f‖p 6= 0 and ‖g‖q 6= 0.

For p = 1 and q =∞ (similarly for p =∞ and q = 1) we have

|fg| = |f | |g| ≤ |f | ‖g‖∞,

so that ∫
E

|fg| dµ ≤
∫
E

|f | ‖g‖∞ dµ = ‖g‖∞
∫
E

|f | dµ = ‖g‖∞‖f‖1 = ‖f‖1‖g‖∞.

For p, q ∈ (1,∞), if we set

a =
f

‖f‖p
, b =

g

‖g‖q
and substitute these into the inequality

|ab| ≤ |a|
p

p
+
|b|q

q
,

we get
fg

‖f‖p‖g‖q
≤ fp

p‖f‖pp
+

gq

q‖g‖qq
a.e. in E.

Integrating over E gives

1

‖f‖p‖g‖q

∫
E

fg dµ ≤ 1

p‖f‖pp

∫
E

fp dµ+
1

q‖g‖qq

∫
E

gq dµ

=
‖f‖pp
p‖f‖pp

+
‖g‖qq
q‖g‖qq

=
1

p
+

1

q
= 1.

Multiplication by ‖f‖p‖g‖q gives the inequality∫
E

fg dµ ≤ ‖f‖p‖g‖q,

from which it follows that fg ∈ L1(E) when f ∈ Lp(E) and g ∈ Lp(E).

This inequality is derived from the inequality

s ≤ sp

p
+

1

q

for which equality holds only when s = 1.



Hence

1 = s =
|a|
|b|q/p

⇒ |a| = |b|q/p,

and since a = f/‖f‖p and b = g/‖g‖q we obtain

|f |
‖f‖p

=
|g|q/p

‖g‖q/pq

.

Applying the pth power to both sides gives

|f |p

‖f‖pp
=
|g|q

‖g‖qq
,

and hence that

|f |p =
‖f‖pp
‖g‖qq

|g|q.

Therefore equality holds only when |f |p = c|g|q for c = ‖f‖pp/‖g‖qq. �


