Math 541 Lecture #37 V.7: Convergence in $L^p(E)$ and Completeness, Part I

§7: Convergence in $L^p(E)$ and Completeness. We say that a sequence $\{f_n\}$ in $L^p(E)$ converges to $f \in L^p(E)$, written $\{f_n\} \to f$, if

$$\lim_{n \to \infty} \|f_n - f\|_p = 0.$$

This is convergence in the norm topology of $L^{p}(E)$.

A sequence $\{f_n\}$ in $L^p(E)$ is Cauchy if for every $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that

$$||f_n - f_m||_p \le \epsilon \text{ for all } n, m \ge N_\epsilon.$$

Proposition. If $\{f_n\} \to f$ in $L^p(E)$, then $\{f_n\}$ is Cauchy.

Proof. Suppose $\{f_n\} \to f$ in $L^p(E)$.

Then for $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that $||f_n - f||_p \le \epsilon/2$ for all $n \ge N_{\epsilon}$.

Hence by Minkowski's inequality we have for all $n, m \ge N_{\epsilon}$ that

$$||f_n - f_m||_p = ||(f_n - f) - (f_m - f)||_p$$

$$\leq ||f_n - f||_p + ||f_m - f||_p$$

$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Thus $\{f_n\}$ is Cauchy in $L^p(E)$.

Theorem 7.1 (Riesz-Fischer). For $1 \leq p \leq \infty$, if $\{f_n\}$ is a Cauchy sequence in $L^p(E)$, then there exists $f \in L^p(E)$ such that $\{f_n\} \to f$.

Proof. We first assume $1 \le p < \infty$.

Suppose $\{f_n\}$ is Cauchy.

Then for each $j \in \mathbb{N}$, there is $n_j \in \mathbb{N}$ such that

$$||f_n - f_m||_p \le \frac{1}{2^j} \text{ for all } n, m \ge n_j.$$

WLOG we assume that $n_j < n_{j+1}$ for all j. Formally set

$$f(x) = f_{n_1}(x) + \sum_{j=1}^{\infty} \left(f_{n_{j+1}}(x) - f_{n_j}(x) \right)$$
 a.e. in E.

We claim that this defines a function $f \in L^p(E)$ for which $\{f_n\} \to f$. For $m \in \mathbb{N}$ set

$$g_m(x) = \sum_{j=1}^m |f_{n_{j+1}}(x) - f_{n_j}(x)|$$
 a.e. in E.

Each g_m is nonnegative, and $\{g_m\}$ is monotone nondecreasing, i.e., $g_m(x) \leq g_{m+1}(x)$.

The limit function

$$g(x) = \lim_{m \to \infty} g_m(x) = \sup g_m(x)$$

exists a.e. in E, and is measurable.

Thus we have that

$$g^{p}(x) = \lim_{m \to \infty} g^{p}_{m}(x) = \liminf_{m \to \infty} g^{p}_{m}(x).$$

By Fatou's Lemma we have

$$||g||_p^p = \int_E g^p \ d\mu = \int_E \liminf g_m^p \ d\mu \le \liminf \int_E g_m^p \ d\mu = \liminf ||g_m||_p^p.$$

By Minkowski's inequality and $n_{j+1} > n_j$ we have

$$||g_m||_p = \left\| \sum_{j=1}^m |f_{n_{j+1}} - f_{n_j}| \right\|_p$$
$$\leq \sum_{j=1}^m ||f_{n_{j+1}} - f_{n_j}||_p$$
$$\leq \sum_{j=1}^m \frac{1}{2^j} \leq 1.$$

Thus $\liminf \|g_m\|_p < \infty$, so that $\|g\|_p < \infty$, hence $g \in L^p(E)$ implying that $g(x) < \infty$ a.e. in E.

For those $x \in E$ where $g(x) < \infty$ the series

$$\sum_{j=1}^{\infty} \left(f_{n_{j+1}}(x) - f_{n_j}(x) \right)$$

converges absolutely because

$$g_m(x) = \sum_{j=1}^m |f_{n_{j+1}}(x) - f_{n_j}(x)|$$

converges to $g(x) < \infty$.

Since

$$f_{n_1} + \sum_{j=1}^{k-1} (f_{n_{j+1}} - f_{n_j}) = f_{n_k}$$

we obtain

$$f(x) = \lim_{j \to \infty} f_{n_j}(x)$$
 a.e. $x \in E$.

Thus f is a measurable function.

Recall for an absolutely convergent series $\sum a_n$ that $|\sum a_n| \leq \sum |a_n|$.

By this, we have $f \in L^p(E)$ because

$$|f(x)| \le |f_{n_1}(x)| + g(x)$$
 a.e. in E

and f_{n_1} and g are in $L^p(E)$.

It remains to show that pointwise limit f of $\{f_{n_j}\}$ is the L^p limit of $\{f_n\}$.

Recall that for each $j \in \mathbb{N}$ there is $n_j \in \mathbb{N}$ such that $||f_n - f_m||_p < 1/2^j$ for all $n, m \ge n_j$. Thus for every $m \ge n_j$, we have by Fatou's Lemma

$$\int_{E} |f - f_{m}|^{p} d\mu = \int_{E} \lim_{k \to \infty} |f_{n_{k}} - f_{m}|^{p} d\mu$$
$$= \int_{E} \liminf_{k} |f_{n_{k}} - f_{m}|^{p} d\mu$$
$$\leq \liminf_{k} \int_{E} |f_{n_{k}} - f_{m}|^{p} d\mu$$
$$\leq \liminf_{k} ||f_{n_{k}} - f_{m}||^{p}$$
$$\leq ||f_{n_{j}} - f_{m}||^{p}$$
$$\leq \left(\frac{1}{2^{j}}\right)^{p}.$$

This says that

$$||f - f_m||_p = \left(\int_E |f - f_m|^p \ d\mu\right)^{1/p} \le \frac{1}{2^j}$$

which implies that

$$||f - f_m||_p \to 0 \text{ as } m \to \infty.$$

Therefore the Cauchy sequence $\{f_n\}$ in $L^p(E)$ converges to $f \in L^p(E)$. The proof of the Riesz-Fischer Theorem when $p = \infty$ is in the next lecture.