Math 541 Lecture #38
V.7: Convergence in LP(F) and Completeness, Part 11
V.8: Separating LP(F) by Simple Functions
V.18: If E C RY and p € [1,00), then LP(E) is Separable, Part I

It remains to prove the Riesz-Fisher Theorem when p = oc.

Let
A=Az € E: [fu(@)| > | full=c}
and
Bum={z € E:|fu(z) = fm(@)] > | fo = finlloo }-
Set

(90

Because fi, € L>(F) for all k we have pu(Ax) = 0.

Because f, — fm € L>®(E) for all n,m, we have p(B, ) = 0.
Hence p(F) = 0.

For all x € & — I we have

(@) = fn(@)| < I foo = fnlloo = 0.
This means that {f,} on E — F is uniformly Cauchy, i.e., for € > 0 there exists N € N
such that |f,(z) — fi(z)| < efor all n,m > N and all x € E — F.
Thus for each z € E — F, the sequence {f,(z)} is Cauchy in R.
By the completeness of R, the sequence {f,(x)} converges to say f(x).
For z € F define f(z) = 0.
We claim the function f is in L*°(E) because it is bounded.

If
sup{|| filloo : m € N} = 00,

then we get a contradiction to

[ [[fnllse = [[fmlloe | < 1fn = finlloo <€

for fixed n > N and arbitrarily large m > N.

Thus
sup{|| filloo : m € N} < 00.

This means there is a finite K > 0 such that |f,,(z)| < K for all z € E — F and all m.
As f,(z) = f(z) pointwise for z € E — F and f(z) =0 for z € F, we obtain

sup{|f(x)] : x € E} < 0.



Thus f € L>(E).

The sequence {f,} converges uniformly to f on E — F because for m > N we have
1) = Ful@)] = i ful@) = ful@)] < 1~ Fuloe <.

so that |f(x) — fu(x)| < € for all n > N uniformly in z € E — F.
Thus ||f — fullee < € for all n > N, i.e., f, converges to f in L*(F). O

Being complete as metric spaces, the LP(F) spaces are of second category, i.e., they are
not the countable union of nowhere dense sets.

§8: Separating LP(FE) by Simple Functions. We show that the simple functions

in LP(E) are dense.

This does not say (yet) that LP(FE) is separable (has a countable dense subset).

Proposition 8.1. If f € LP(E) for some 1 < p < oo, then for every e > 0 there exists
a simple function ¢ € LP(E) such that ||f — ¢||, <e.

Proof. By the decomposition f = f* — f~ if we can find simple functions ¢ and 1 such
that

Hf+ - SOHP < 6/2
and
1f~ =l <e€/2,

then ¢ — 1 is a simple function for which
1f = (=D =1 —0)+ @& =)l
<[f =l + 17 =2l

€
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So we need only show that for a nonnegative f there is a simple function ¢ such that
1f =l <e

Since f is measurable, there is a sequence of simple functions {¢, } for which ¢, < ¢, 11
and ¢, — f every where in F.

For 1 < p < oo, the sequence (f — ¢,)? converges to zero a.e. in E, and {(f — ¢,)P} is
dominated by the integrable f?, i.e., (f — p,)P < fP.

By the Dominated Convergence Theorem we have
i |1 = gall = lim [ (7= 0 du= [ 0du=0.

Thus for € > 0 there exists n such that ||f — ¢,||, <e.
For p = 0o, we have || f||o < 0o so that f(x) < ||f]l« a.e. in E.
By the construction of {¢,} we have f(z) — p,(x) <27 a.e. in E.

Thus
p({z € E: f(z)— pn(z) >27"}) =0.



This implies, since

If = #nlloe = nf{k € R: p({z € E: f(2) — ¢n(x) > k} = 0},
that
1f = ¢nlle <277,
and hence for € > 0 the choice of n such that 27" < e gives || f — pnllec < €. O
§18: If E C RY and p € [1,00), then LP(E) is Separable. We know that the

collection of simple functions in LP(F) is dense in LP(E) for all p € [1, co].

The structure of RY enables the separability of LP(E) when E is a Lebesgue measurable
subset of RY and p € [1,00).

When dealing with Lebesgue measure p on R we typically replace the du in the Lebesgue
integral with dx, i.e.,
/ f dx.
E

Theorem 18.1. Let E C RY be Lebesgue measurable. The complete metric space
LP(F) is separable when p € [1, 00).

Proof. Let {Q} be an enumeration of the closed dyadic cubes in R,

For n € N, let S,, denote the collection of simple functions defined on E such that each

@ € S, has the form
Y= Z aiXQinE
i=1

for a; € Q.
Each S,, is countable, and the union S = US,, is countable as well.

We show that S is dense in LP(E), i.e., for each f € LP(E) there is for each € > 0 a
@ € S such that || f — ¢, <e.

To this end, we consider three cases: p(E) = 0, E is bounded with p(E) > 0 and
f € L*(F), and E is unbounded with p(E) > 0.

In the case of u(E) = 0, there is nothing to show because for every ¢ > 0 we have for
each ¢ € S5, that

I\f—w!\£=/\f—s0\pdx=0<ep,
E

meaning that S, is dense in LP(E).

The remaining two cases are in the next lecture.



