
Math 541 Lecture #38
V.7: Convergence in Lp(E) and Completeness, Part II

V.8: Separating Lp(E) by Simple Functions
V.18: If E ⊂ RN and p ∈ [1,∞), then Lp(E) is Separable, Part I

It remains to prove the Riesz-Fisher Theorem when p =∞.

Let
Ak = {x ∈ E : |fk(x)| > ‖fk‖∞}

and
Bn,m = {x ∈ E : |fn(x)− fm(x)| > ‖fn − fm‖∞}.

Set

F =

(
∞⋃
k=1

Ak

)
∪

(
∞⋃
n,m

Bm,n

)
.

Because fk ∈ L∞(E) for all k we have µ(Ak) = 0.

Because fn − fm ∈ L∞(E) for all n,m, we have µ(Bn,m) = 0.

Hence µ(F ) = 0.

For all x ∈ E − F we have

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ → 0.

This means that {fn} on E − F is uniformly Cauchy, i.e., for ε > 0 there exists N ∈ N
such that |fn(x)− fm(x)| < ε for all n,m > N and all x ∈ E − F .

Thus for each x ∈ E − F , the sequence {fn(x)} is Cauchy in R.

By the completeness of R, the sequence {fn(x)} converges to say f(x).

For x ∈ F define f(x) = 0.

We claim the function f is in L∞(E) because it is bounded.

If
sup{‖fm‖∞ : m ∈ N} =∞,

then we get a contradiction to

| ‖fn‖∞ − ‖fm‖∞ | ≤ ‖fn − fm‖∞ < ε

for fixed n ≥ N and arbitrarily large m > N .

Thus
sup{‖fm‖∞ : m ∈ N} <∞.

This means there is a finite K > 0 such that |fm(x)| ≤ K for all x ∈ E − F and all m.

As fn(x)→ f(x) pointwise for x ∈ E − F and f(x) = 0 for x ∈ F , we obtain

sup{|f(x)| : x ∈ E} <∞.



Thus f ∈ L∞(E).

The sequence {fn} converges uniformly to f on E − F because for m > N we have

|f(x)− fm(x)| = lim
n→∞

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ < ε,

so that |f(x)− fn(x)| < ε for all n > N uniformly in x ∈ E − F .

Thus ‖f − fn‖∞ < ε for all n > N , i.e., fn converges to f in L∞(E). �

Being complete as metric spaces, the Lp(E) spaces are of second category, i.e., they are
not the countable union of nowhere dense sets.

§8: Separating Lp(E) by Simple Functions. We show that the simple functions
in Lp(E) are dense.

This does not say (yet) that Lp(E) is separable (has a countable dense subset).

Proposition 8.1. If f ∈ Lp(E) for some 1 ≤ p ≤ ∞, then for every ε > 0 there exists
a simple function ϕ ∈ Lp(E) such that ‖f − ϕ‖p ≤ ε.

Proof. By the decomposition f = f+ − f− if we can find simple functions ϕ and ψ such
that

‖f+ − ϕ‖p < ε/2

and
‖f− − ψ‖p < ε/2,

then ϕ− ψ is a simple function for which

‖f − (ϕ− ψ)‖p = ‖(f+ − ϕ) + (ψ − f−)‖p
≤ ‖f+ − ϕ‖p + ‖f− − ψ‖p
≤ ε.

So we need only show that for a nonnegative f there is a simple function ϕ such that
‖f − ϕ‖p ≤ ε.

Since f is measurable, there is a sequence of simple functions {ϕn} for which ϕn ≤ ϕn+1

and ϕn → f every where in E.

For 1 ≤ p < ∞, the sequence (f − ϕn)p converges to zero a.e. in E, and {(f − ϕn)p} is
dominated by the integrable fp, i.e., (f − ϕn)p ≤ fp.

By the Dominated Convergence Theorem we have

lim
n→∞

‖f − ϕn‖pp = lim
n→∞

∫
E

(f − ϕn)p dµ =

∫
E

0 dµ = 0.

Thus for ε > 0 there exists n such that ‖f − ϕn‖p ≤ ε.

For p =∞, we have ‖f‖∞ <∞ so that f(x) ≤ ‖f‖∞ a.e. in E.

By the construction of {ϕn} we have f(x)− ϕn(x) ≤ 2−n a.e. in E.

Thus
µ
(
{x ∈ E : f(x)− ϕn(x) > 2−n}

)
= 0.



This implies, since

‖f − ϕn‖∞ = inf{k ∈ R : µ({x ∈ E : f(x)− ϕn(x) > k} = 0},

that
‖f − ϕn‖∞ ≤ 2−n,

and hence for ε > 0 the choice of n such that 2−n ≤ ε gives ‖f − ϕn‖∞ ≤ ε. �

§18: If E ⊂ RN and p ∈ [1,∞), then Lp(E) is Separable. We know that the
collection of simple functions in Lp(E) is dense in Lp(E) for all p ∈ [1,∞].

The structure of RN enables the separability of Lp(E) when E is a Lebesgue measurable
subset of RN and p ∈ [1,∞).

When dealing with Lebesgue measure µ on R we typically replace the dµ in the Lebesgue
integral with dx, i.e., ∫

E

f dx.

Theorem 18.1. Let E ⊂ RN be Lebesgue measurable. The complete metric space
Lp(E) is separable when p ∈ [1,∞).

Proof. Let {Qk} be an enumeration of the closed dyadic cubes in RN .

For n ∈ N, let Sn denote the collection of simple functions defined on E such that each
ϕ ∈ Sn has the form

ϕ =
n∑

i=1

aiχQi∩E

for ai ∈ Q.

Each Sn is countable, and the union S = ∪Sn is countable as well.

We show that S is dense in Lp(E), i.e., for each f ∈ Lp(E) there is for each ε > 0 a
ϕ ∈ S such that ‖f − ϕ‖p ≤ ε.

To this end, we consider three cases: µ(E) = 0, E is bounded with µ(E) > 0 and
f ∈ L∞(E), and E is unbounded with µ(E) > 0.

In the case of µ(E) = 0, there is nothing to show because for every ε > 0 we have for
each ϕ ∈ Sn that

‖f − ϕ‖pp =

∫
E

|f − ϕ|p dx = 0 < εp,

meaning that Sn is dense in Lp(E).

The remaining two cases are in the next lecture.


