Math 541 Lecture #38 V.7: Convergence in $L^p(E)$ and Completeness, Part II V.8: Separating $L^p(E)$ by Simple Functions V.18: If $E \subset \mathbb{R}^N$ and $p \in [1, \infty)$, then $L^p(E)$ is Separable, Part I

It remains to prove the Riesz-Fisher Theorem when $p = \infty$. Let

$$A_k = \{x \in E : |f_k(x)| > ||f_k||_{\infty}\}$$

and

$$B_{n,m} = \{x \in E : |f_n(x) - f_m(x)| > ||f_n - f_m||_{\infty} \}.$$

Set

$$F = \left(\bigcup_{k=1}^{\infty} A_k\right) \cup \left(\bigcup_{n,m}^{\infty} B_{m,n}\right).$$

Because $f_k \in L^{\infty}(E)$ for all k we have $\mu(A_k) = 0$. Because $f_n - f_m \in L^{\infty}(E)$ for all n, m, we have $\mu(B_{n,m}) = 0$. Hence $\mu(F) = 0$. For all $x \in E - F$ we have

$$|f_n(x) - f_m(x)| \le ||f_n - f_m||_{\infty} \to 0.$$

This means that $\{f_n\}$ on E - F is uniformly Cauchy, i.e., for $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $|f_n(x) - f_m(x)| < \epsilon$ for all n, m > N and all $x \in E - F$.

Thus for each $x \in E - F$, the sequence $\{f_n(x)\}$ is Cauchy in \mathbb{R} .

By the completeness of \mathbb{R} , the sequence $\{f_n(x)\}$ converges to say f(x).

For $x \in F$ define f(x) = 0.

We claim the function f is in $L^{\infty}(E)$ because it is bounded. If

 $\sup\{\|f_m\|_{\infty}: m \in \mathbb{N}\} = \infty,$

then we get a contradiction to

$$| ||f_n||_{\infty} - ||f_m||_{\infty} | \le ||f_n - f_m||_{\infty} < \epsilon$$

for fixed $n \ge N$ and arbitrarily large m > N. Thus

 $\sup\{\|f_m\|_{\infty}: m \in \mathbb{N}\} < \infty.$

This means there is a finite K > 0 such that $|f_m(x)| \le K$ for all $x \in E - F$ and all m. As $f_n(x) \to f(x)$ pointwise for $x \in E - F$ and f(x) = 0 for $x \in F$, we obtain

$$\sup\{|f(x)|: x \in E\} < \infty.$$

Thus $f \in L^{\infty}(E)$.

The sequence $\{f_n\}$ converges uniformly to f on E - F because for m > N we have

$$|f(x) - f_m(x)| = \lim_{n \to \infty} |f_n(x) - f_m(x)| \le ||f_n - f_m||_{\infty} < \epsilon,$$

so that $|f(x) - f_n(x)| < \epsilon$ for all n > N uniformly in $x \in E - F$.

Thus $||f - f_n||_{\infty} < \epsilon$ for all n > N, i.e., f_n converges to f in $L^{\infty}(E)$.

Being complete as metric spaces, the $L^{p}(E)$ spaces are of second category, i.e., they are not the countable union of nowhere dense sets.

§8: Separating $L^p(E)$ by Simple Functions. We show that the simple functions in $L^p(E)$ are dense.

This does not say (yet) that $L^{p}(E)$ is separable (has a countable dense subset).

Proposition 8.1. If $f \in L^p(E)$ for some $1 \le p \le \infty$, then for every $\epsilon > 0$ there exists a simple function $\varphi \in L^p(E)$ such that $||f - \varphi||_p \le \epsilon$.

Proof. By the decomposition $f = f^+ - f^-$ if we can find simple functions φ and ψ such that

$$\|f^+ - \varphi\|_p < \epsilon/2$$

and

$$\|f^- - \psi\|_p < \epsilon/2,$$

then $\varphi - \psi$ is a simple function for which

$$\|f - (\varphi - \psi)\|_p = \|(f^+ - \varphi) + (\psi - f^-)\|_p$$
$$\leq \|f^+ - \varphi\|_p + \|f^- - \psi\|_p$$
$$\leq \epsilon.$$

So we need only show that for a nonnegative f there is a simple function φ such that $\|f - \varphi\|_p \leq \epsilon$.

Since f is measurable, there is a sequence of simple functions $\{\varphi_n\}$ for which $\varphi_n \leq \varphi_{n+1}$ and $\varphi_n \to f$ every where in E.

For $1 \leq p < \infty$, the sequence $(f - \varphi_n)^p$ converges to zero a.e. in E, and $\{(f - \varphi_n)^p\}$ is dominated by the integrable f^p , i.e., $(f - \varphi_n)^p \leq f^p$.

By the Dominated Convergence Theorem we have

$$\lim_{n \to \infty} \|f - \varphi_n\|_p^p = \lim_{n \to \infty} \int_E (f - \varphi_n)^p \ d\mu = \int_E 0 \ d\mu = 0.$$

Thus for $\epsilon > 0$ there exists n such that $||f - \varphi_n||_p \le \epsilon$. For $p = \infty$, we have $||f||_{\infty} < \infty$ so that $f(x) \le ||f||_{\infty}$ a.e. in E. By the construction of $\{\varphi_n\}$ we have $f(x) - \varphi_n(x) \le 2^{-n}$ a.e. in E. Thus

$$\mu\left(\{x \in E : f(x) - \varphi_n(x) > 2^{-n}\}\right) = 0.$$

This implies, since

$$||f - \varphi_n||_{\infty} = \inf\{k \in \mathbb{R} : \mu(\{x \in E : f(x) - \varphi_n(x) > k\} = 0\},\$$

that

$$\|f - \varphi_n\|_{\infty} \le 2^{-n}$$

and hence for $\epsilon > 0$ the choice of n such that $2^{-n} \leq \epsilon$ gives $||f - \varphi_n||_{\infty} \leq \epsilon$.

§18: If $E \subset \mathbb{R}^N$ and $p \in [1, \infty)$, then $L^p(E)$ is Separable. We know that the collection of simple functions in $L^p(E)$ is dense in $L^p(E)$ for all $p \in [1, \infty]$.

The structure of \mathbb{R}^N enables the separability of $L^p(E)$ when E is a Lebesgue measurable subset of \mathbb{R}^N and $p \in [1, \infty)$.

When dealing with Lebesgue measure μ on \mathbb{R} we typically replace the $d\mu$ in the Lebesgue integral with dx, i.e.,

$$\int_E f \, dx$$

Theorem 18.1. Let $E \subset \mathbb{R}^N$ be Lebesgue measurable. The complete metric space $L^p(E)$ is separable when $p \in [1, \infty)$.

Proof. Let $\{Q_k\}$ be an enumeration of the closed dyadic cubes in \mathbb{R}^N .

For $n \in \mathbb{N}$, let S_n denote the collection of simple functions defined on E such that each $\varphi \in S_n$ has the form

$$\varphi = \sum_{i=1}^{n} a_i \chi_{Q_i \cap E}$$

for $a_i \in \mathbb{Q}$.

Each S_n is countable, and the union $S = \bigcup S_n$ is countable as well.

We show that S is dense in $L^p(E)$, i.e., for each $f \in L^p(E)$ there is for each $\epsilon > 0$ a $\varphi \in S$ such that $||f - \varphi||_p \leq \epsilon$.

To this end, we consider three cases: $\mu(E) = 0$, E is bounded with $\mu(E) > 0$ and $f \in L^{\infty}(E)$, and E is unbounded with $\mu(E) > 0$.

In the case of $\mu(E) = 0$, there is nothing to show because for every $\epsilon > 0$ we have for each $\varphi \in S_n$ that

$$||f - \varphi||_p^p = \int_E |f - \varphi|^p \, dx = 0 < \epsilon^p,$$

meaning that S_n is dense in $L^p(E)$.

The remaining two cases are in the next lecture.