
Math 541 Lecture #39
V.18: If E ⊂ RN and p ∈ [1,∞), then Lp(E) is Separable, Part II

We continue with the proof of the Separability of Lp(E) for p ∈ [1,∞).

Suppose E is bounded with µ(E) > 0.

Let f ∈ Lp(E) ∩ L∞(E) with ‖f‖∞ > 0 (there is nothing to show if ‖f‖∞ = 0, because
then f = 0 a.e. in E).

By Lusin’s Theorem (need f ∈ L∞(E) to apply this, i.e., f is a bounded function), the
function f is quasi-continuous, so for ε > 0 there is a closed set Eε such that Eε ⊂ E,

µ(E − Eε) ≤
εp

4p‖f‖p∞
,

and f is continuous on Eε.

Because E is bounded and Eε is closed, the set Eε is compact, so that f is uniformly
continuous on Eε.

Then for ε > 0 there is δ > 0 such that

|f(x)− f(y)| ≤ ε

4µ(E)1/p

for all x, y ∈ Eε with |x− y| < δ.

Since Eε is bounded, there are finitely many (depending on δ) closed dyadic cubes with
pairwise disjoint interior and diameter less than δ whose union covers Eε:

Q1, Q2, . . . , Qnδ , Q̊i ∩ Q̊j = ∅ for i 6= j.

[Technically, we have a finite collection Qk1 , Qk2 , . . . , Qknδ
of the dyadic cubes, not nec-

essarily the first nδ of them in the enumeration.]

Select xi ∈ Qi ∩ Eε for each i = 1, 2, . . . , nδ, and choose ai ∈ Q such that |ai| ≤ |f(xi)|
and

|f(xi)− ai| ≤
ε

4µ(E)1/p
.

For the simple function

ϕ =

nδ∑
i=1

aiχQi∩E ∈ Sn

we have ∫
E

|f − ϕ|p dx =

∫
Eε

|f − ϕ|p dx+

∫
E−Eε

|f − ϕ|p dx.

For the first integral on the right-hand side, because Eε = ∪nδi=1(Qi ∩ Eε) with pairwise



intersections of measure zero, we have that∫
Eε

|f − ϕ|p dx =

nδ∑
i=1

∫
Qi∩Eε

|f − ϕ|p dx =

nδ∑
i=1

∫
Qi∩Eε

|f − ai|p dx

=

nδ∑
i=1

∫
Qi∩Eε

|(f − f(xi)) + (f(xi)− ai)|p dx

≤
nδ∑
i=1

∫
Qi∩Eε

2p−1
(
|f − f(xi)|p + |f(xi)− ai|p

)
dx

≤ 2p−1
nδ∑
i=1

∫
Qi∩Eε

(
ε

4µ(E)1/p

)p
dx+ 2p−1

nδ∑
i=1

∫
Qi∩Eε

(
ε

4µ(E)1/p

)p
dx

= 2p
nδ∑
i=1

εpµ(Qi ∩ Eε)
4pµ(E)

=
εpµ(Eε)

2pµ(E)

≤ εp

2p
.

For the second integral on the right-hand side, because ‖ϕ‖∞ = max{|ai|} ≤ ‖f‖∞ (this
follows since |ai| ≤ |f(xi)|), we have that∫

E−Eε
|f − ϕ|p dx ≤

∫
E−Eε

2p−1
(
|f |p + |ϕ|p

)
dx

≤
∫
E−Eε

2p−1
(
‖f‖p∞ + ‖f‖p∞

)
dx

= 2p
∫
E−Eε

‖f‖p∞ dx

= 2p‖f‖p∞µ(E − Eε)

≤ 2p‖f‖p∞
εp

4p‖f‖p∞

=
εp

2p
.

Thus we have that ∫
E

|f − ϕ|p dx ≤ εp

2p
+
εp

2p
=

2εp

2p
=

εp

2p−1
≤ εp

so that

‖f − ϕ‖p =

(∫
E

|f − ϕ|p dx
)1/p

≤ ε.

Now assume that E is arbitrary with µ(E) > 0.



For f ∈ Lp(E) we have that

∞∑
n=1

∫
E∩{n<|x|≤n+1}

|f |p dx =

∫
E

|f |p dx <∞.

Thus for ε > 0 there is nε ∈ N such that∫
E∩{|x|≥nε}

|f |p dx ≤ εp

4p

(the tail of the series goes to 0).

Also, since f ∈ Lp(E), we also have for each n ∈ N that

npµ([|f | ≥ n]) =

∫
[|f |≥n]

np dx

≤
∫
[|f |≥n]

|f |pdx+

∫
[|f |<n]

|f |p dx

=

∫
E

|f |p dx

= ‖f‖pp <∞.

Thus for every δ > 0 there is nδ ∈ N such that

µ([|f | ≥ n]) ≤ δ for all n ≥ nδ

(the sequence {np} → ∞ as n→∞, so that µ([|f |] ≥ n])→ 0).

By Vitali’s Theorem (the absolute continuity of the integral), for ε > 0 there is δ > 0
such that ∫

[|f |≥n]
|f |p dx ≤ εp

4p
for all n ≥ nδ.

For the measurable set
En = (E ∩ [|x| ≥ n]) ∪ [|f | ≥ n],

and for n ≥ max{nε, nδ} we have that∫
En

|f |p dx ≤
∫
E∩[|x|≥n]

|f |p dx+

∫
[|f |≥n]

|f |p dx

≤ εp

4p
+
εp

4p
=

2εp

4p
.

Hence for all n ≥ max{nε, nδ}, we have(∫
En

|f |p dx
)1/p

≤ 21/pε

4
≤ ε

2
.

Now the set E −En is bounded because it is a subset of [|x| < n], and the restriction of
f to E − En is bounded because [|f | < n] on E − En.



By the previous case there is a simple function ϕ ∈ S that is zero outside of E − En (in
particular it is zero on En) such that(∫

E−En
|f − ϕ|p dx

)1/p

dx ≤ ε

2
.

Therefore

‖f − ϕ‖p = ‖(f − ϕ)(χEn + χE−En)‖p
≤ ‖(f − ϕ)χEn‖p + ‖(f − ϕ)χE−En‖p

=

(∫
En

|f − ϕ|p dx
)1/p

+

(∫
E−En

|f − ϕ|p dx
)1/p

=

(∫
En

|f − 0|p dx
)1/p

+

(∫
E−En

|f − ϕ|p dx
)1/p

≤ ε

2
+
ε

2
= ε.

Thus the countable S is dense in Lp(E), and hence Lp(E) is separable. �

Recall that a topological space satisfies the second axiom of countability it the topology
has a countable base.

Corollary. For each p ∈ [1,∞), the complete metric space Lp(E) satisfies the second
axiom of countability.

Proof. By Proposition 13.2 in Chapter I, a topological space satisfies the second axiom
of countability if and only if it is separable.

By Theorem 18.1, the topological space Lp(E) is separable. �


