Math 541 Lecture #39

V.18: If $E \subset \mathbb{R}^N$ and $p \in [1, \infty)$, then $L^p(E)$ is Separable, Part II

We continue with the proof of the Separability of $L^p(E)$ for $p \in [1, \infty)$.

Suppose E is bounded with $\mu(E) > 0$.

Let $f \in L^p(E) \cap L^{\infty}(E)$ with $||f||_{\infty} > 0$ (there is nothing to show if $||f||_{\infty} = 0$, because then f = 0 a.e. in E).

By Lusin's Theorem (need $f \in L^{\infty}(E)$ to apply this, i.e., f is a bounded function), the function f is quasi-continuous, so for $\epsilon > 0$ there is a closed set E_{ϵ} such that $E_{\epsilon} \subset E$,

$$\mu(E - E_{\epsilon}) \le \frac{\epsilon^p}{4^p \|f\|_{\infty}^p},$$

and f is continuous on E_{ϵ} .

Because E is bounded and E_{ϵ} is closed, the set E_{ϵ} is compact, so that f is uniformly continuous on E_{ϵ} .

Then for $\epsilon > 0$ there is $\delta > 0$ such that

$$|f(x) - f(y)| \le \frac{\epsilon}{4\mu(E)^{1/p}}$$

for all $x, y \in E_{\epsilon}$ with $|x - y| < \delta$.

Since E_{ϵ} is bounded, there are finitely many (depending on δ) closed dyadic cubes with pairwise disjoint interior and diameter less than δ whose union covers E_{ϵ} :

$$Q_1, Q_2, \ldots, Q_{n_\delta}, \ \mathring{Q}_i \cap \mathring{Q}_j = \emptyset \text{ for } i \neq j.$$

[Technically, we have a finite collection $Q_{k_1}, Q_{k_2}, \ldots, Q_{k_{n_{\delta}}}$ of the dyadic cubes, not necessarily the first n_{δ} of them in the enumeration.]

Select $x_i \in Q_i \cap E_{\epsilon}$ for each $i = 1, 2, ..., n_{\delta}$, and choose $a_i \in \mathbb{Q}$ such that $|a_i| \leq |f(x_i)|$ and

$$|f(x_i) - a_i| \le \frac{\epsilon}{4\mu(E)^{1/p}}$$

For the simple function

$$\varphi = \sum_{i=1}^{n_{\delta}} a_i \chi_{Q_i \cap E} \in S_n$$

we have

$$\int_E |f - \varphi|^p \, dx = \int_{E_\epsilon} |f - \varphi|^p \, dx + \int_{E - E_\epsilon} |f - \varphi|^p \, dx.$$

For the first integral on the right-hand side, because $E_{\epsilon} = \bigcup_{i=1}^{n_{\delta}} (Q_i \cap E_{\epsilon})$ with pairwise

intersections of measure zero, we have that

$$\begin{split} \int_{E_{\epsilon}} |f - \varphi|^p \, dx &= \sum_{i=1}^{n_{\delta}} \int_{Q_i \cap E_{\epsilon}} |f - \varphi|^p \, dx = \sum_{i=1}^{n_{\delta}} \int_{Q_i \cap E_{\epsilon}} |f - a_i|^p \, dx \\ &= \sum_{i=1}^{n_{\delta}} \int_{Q_i \cap E_{\epsilon}} |(f - f(x_i)) + (f(x_i) - a_i)|^p \, dx \\ &\leq \sum_{i=1}^{n_{\delta}} \int_{Q_i \cap E_{\epsilon}} 2^{p-1} (|f - f(x_i)|^p + |f(x_i) - a_i|^p) \, dx \\ &\leq 2^{p-1} \sum_{i=1}^{n_{\delta}} \int_{Q_i \cap E_{\epsilon}} \left(\frac{\epsilon}{4\mu(E)^{1/p}}\right)^p \, dx + 2^{p-1} \sum_{i=1}^{n_{\delta}} \int_{Q_i \cap E_{\epsilon}} \left(\frac{\epsilon}{4\mu(E)^{1/p}}\right)^p \, dx \\ &= 2^p \sum_{i=1}^{n_{\delta}} \frac{\epsilon^p \mu(Q_i \cap E_{\epsilon})}{4^p \mu(E)} \\ &= \frac{\epsilon^p \mu(E_{\epsilon})}{2^p \mu(E)} \\ &\leq \frac{\epsilon^p}{2^p}. \end{split}$$

For the second integral on the right-hand side, because $\|\varphi\|_{\infty} = \max\{|a_i|\} \le \|f\|_{\infty}$ (this follows since $|a_i| \le |f(x_i)|$), we have that

$$\begin{split} \int_{E-E_{\epsilon}} |f-\varphi|^p \, dx &\leq \int_{E-E_{\epsilon}} 2^{p-1} \left(|f|^p + |\varphi|^p \right) \, dx \\ &\leq \int_{E-E_{\epsilon}} 2^{p-1} \left(||f||_{\infty}^p + ||f||_{\infty}^p \right) \, dx \\ &= 2^p \int_{E-E_{\epsilon}} ||f||_{\infty}^p \, dx \\ &= 2^p ||f||_{\infty}^p \mu (E-E_{\epsilon}) \\ &\leq 2^p ||f||_{\infty}^p \frac{\epsilon^p}{4^p ||f||_{\infty}^p} \\ &= \frac{\epsilon^p}{2^p}. \end{split}$$

Thus we have that

$$\int_{E} |f - \varphi|^p \, dx \le \frac{\epsilon^p}{2^p} + \frac{\epsilon^p}{2^p} = \frac{2\epsilon^p}{2^p} = \frac{\epsilon^p}{2^{p-1}} \le \epsilon^p$$

so that

$$||f - \varphi||_p = \left(\int_E |f - \varphi|^p \, dx\right)^{1/p} \le \epsilon.$$

Now assume that E is arbitrary with $\mu(E) > 0$.

For $f \in L^p(E)$ we have that

$$\sum_{n=1}^{\infty} \int_{E \cap \{n < |x| \le n+1\}} |f|^p \, dx = \int_E |f|^p \, dx < \infty.$$

Thus for $\epsilon > 0$ there is $n_{\epsilon} \in \mathbb{N}$ such that

$$\int_{E \cap \{|x| \ge n_{\epsilon}\}} |f|^p \, dx \le \frac{\epsilon^p}{4^p}$$

(the tail of the series goes to 0).

Also, since $f \in L^p(E)$, we also have for each $n \in \mathbb{N}$ that

$$n^{p}\mu([|f| \ge n]) = \int_{[|f| \ge n]} n^{p} dx$$

$$\leq \int_{[|f| \ge n]} |f|^{p} dx + \int_{[|f| < n]} |f|^{p} dx$$

$$= \int_{E} |f|^{p} dx$$

$$= ||f||_{p}^{p} < \infty.$$

Thus for every $\delta > 0$ there is $n_{\delta} \in \mathbb{N}$ such that

$$\mu([|f| \ge n]) \le \delta \text{ for all } n \ge n_{\delta}$$

(the sequence $\{n^p\} \to \infty$ as $n \to \infty$, so that $\mu([|f|] \ge n]) \to 0$).

By Vitali's Theorem (the absolute continuity of the integral), for $\epsilon > 0$ there is $\delta > 0$ such that

$$\int_{[|f|\ge n]} |f|^p \, dx \le \frac{\epsilon^p}{4^p} \text{ for all } n \ge n_\delta.$$

For the measurable set

$$E_n = (E \cap [|x| \ge n]) \cup [|f| \ge n],$$

and for $n \geq \max\{n_{\epsilon}, n_{\delta}\}$ we have that

$$\int_{E_n} |f|^p \, dx \le \int_{E \cap [|x| \ge n]} |f|^p \, dx + \int_{[|f| \ge n]} |f|^p \, dx$$
$$\le \frac{\epsilon^p}{4^p} + \frac{\epsilon^p}{4^p} = \frac{2\epsilon^p}{4^p}.$$

Hence for all $n \geq \max\{n_{\epsilon}, n_{\delta}\}$, we have

$$\left(\int_{E_n} |f|^p \ dx\right)^{1/p} \le \frac{2^{1/p}\epsilon}{4} \le \frac{\epsilon}{2}.$$

Now the set $E - E_n$ is bounded because it is a subset of [|x| < n], and the restriction of f to $E - E_n$ is bounded because [|f| < n] on $E - E_n$.

By the previous case there is a simple function $\varphi \in S$ that is zero outside of $E - E_n$ (in particular it is zero on E_n) such that

$$\left(\int_{E-E_n} |f-\varphi|^p \, dx\right)^{1/p} \, dx \le \frac{\epsilon}{2}.$$

Therefore

$$\begin{split} \|f - \varphi\|_p &= \|(f - \varphi)(\chi_{E_n} + \chi_{E - E_n})\|_p \\ &\leq \|(f - \varphi)\chi_{E_n}\|_p + \|(f - \varphi)\chi_{E - E_n}\|_p \\ &= \left(\int_{E_n} |f - \varphi|^p \ dx\right)^{1/p} + \left(\int_{E - E_n} |f - \varphi|^p \ dx\right)^{1/p} \\ &= \left(\int_{E_n} |f - 0|^p \ dx\right)^{1/p} + \left(\int_{E - E_n} |f - \varphi|^p \ dx\right)^{1/p} \\ &\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{split}$$

Thus the countable S is dense in $L^{p}(E)$, and hence $L^{p}(E)$ is separable.

Recall that a topological space satisfies the second axiom of countability it the topology has a countable base.

Corollary. For each $p \in [1, \infty)$, the complete metric space $L^{p}(E)$ satisfies the second axiom of countability.

Proof. By Proposition 13.2 in Chapter I, a topological space satisfies the second axiom of countability if and only if it is separable.

By Theorem 18.1, the topological space $L^p(E)$ is separable.