Math 541 Lecture #39
V.18: If E C RN and p € [1,00), then L?(E) is Separable, Part 11

We continue with the proof of the Separability of LP(E) for p € [1, c0).
Suppose E is bounded with p(E) > 0.

Let f € LP(E) N L>®(F) with ||f||oc > 0 (there is nothing to show if || f||. = 0, because
then f =0 a.e. in E).

By Lusin’s Theorem (need f € L*(FE) to apply this, i.e., f is a bounded function), the
function f is quasi-continuous, so for € > 0 there is a closed set E, such that F, C F,
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and f is continuous on FE..

Because F is bounded and E, is closed, the set F. is compact, so that f is uniformly
continuous on F,.

Then for € > 0 there is § > 0 such that

|f(x) = f(y)
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for all z,y € E. with |z —y| < 0.

Since E. is bounded, there are finitely many (depending on §) closed dyadic cubes with
pairwise disjoint interior and diameter less than o whose union covers E.:
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[Technically, we have a finite collection Qy,, Qk,,- - -, Qr,, of the dyadic cubes, not nec-
essarily the first ns of them in the enumeration.]
Select x; € Q; N E, for each i = 1,2,...,ng, and choose a; € Q such that |a;| < |f(x;)]

and
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For the simple function
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For the first integral on the right-hand side, because E. = U, (Q; N E.) with pairwise



intersections of measure zero, we have that
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For the second integral on the right-hand side, because ||| = max{|a;|} < ||f]| (this
follows since |a;| < |f(x;)|), we have that
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Now assume that E is arbitrary with u(E) > 0.

so that



For f € LP(E) we have that
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Thus for € > 0 there is n. € N such that
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(the tail of the series goes to 0).
Also, since f € LP(FE), we also have for each n € N that
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Thus for every § > 0 there is ns € N such that
w([|f] = n]) <4 for all n > ng

(the sequence {n?} — oo as n — oo, so that u([|f|] > n]) — 0).

By Vitali’s Theorem (the absolute continuity of the integral), for € > 0 there is § > 0
such that
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For the measurable set
E, = (EN|lz| >n])U[f] >n],

and for n > max{n.,ns} we have that
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Hence for all n > max{n.,ns}, we have
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Now the set £ — E,, is bounded because it is a subset of [|z| < n], and the restriction of
f to E — E,, is bounded because [|f| <n] on E — E,,.
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By the previous case there is a simple function ¢ € S that is zero outside of £ — FE,, (in
particular it is zero on E,,) such that
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Thus the countable S is dense in LP(E), and hence LP(F) is separable. O

Recall that a topological space satisfies the second axiom of countability it the topology
has a countable base.

Corollary. For each p € [1,00), the complete metric space LP(E) satisfies the second
axiom of countability.

Proof. By Proposition 13.2 in Chapter I, a topological space satisfies the second axiom
of countability if and only if it is separable.

By Theorem 18.1, the topological space LP(E) is separable. 0



