
Math 541 Lecture #40
V.18: If E ⊂ RN and p ∈ [1,∞), then Lp(E) is Separable, Part III

Relationship Among Lp(E) Spaces, Part I

§18.1: L∞(E) is not Separable. Unfortunately, the topological space L∞(E), for a
Lebesgue measurable subset E of RN of positive measure, is not separable; in this sense,
it is too big of a space.

We will demonstrate this lack of separability when E = RN .

Proposition 18.3. The complete metric space L∞(RN) is not separable.

Proof. For s > 0, let Bs(0) be the open ball of radius s centered at the origin 0 in RN .

Then for s > r > 0 we have for every 0 < ε ≤ 1 that

µ({x ∈ RN : |χBs(0)(x)− χBr(0)(x)| > 1− ε})
= µ

(
Bs(0)−Br(0)

)
= µ(Bs(0))− µ(Br(0)) > 0.

This implies that

‖χBs(0) − χBr(0)‖∞
= inf{k ∈ R : µ({x ∈ RN : |χBs(0)(x)− χBr(0)(x)| > k}) = 0}
≥ 1.

[What is ‖χBs(0) − χBr(0)‖p for p ∈ [1,∞)? It is µ(Bs(0))− µ(Br(0)) which goes to zero
as s→ r.]

Consider the uncountable collection

S = {χBs(0) : s > 0} ⊂ L∞(RN),

for which we have that for every f, g ∈ S with f 6= g there holds ‖f − g‖∞ ≥ 1.

Suppose there is a countable subset M of L∞(RN) for which M = L∞(RN).

Then for each f ∈ L∞(RN) we have by the denseness of M that for every open ball

Bε(f) = {g ∈ L∞(RN) : ‖f − g‖∞ < ε}

there exists h ∈M such that h ∈ Bε(f).

In particular, this means that for each f ∈ L∞(RN) there exists an h ∈ M such that
f ∈ B1/3(h) = {f ∈ L∞(RN) : ‖f − h‖∞ < 1/3}.
Thus by the denseness of M in L∞(RN) we have

L∞(RN) =
⋃
h∈M

B1/3(h).



For each h ∈ M the set B1/3(h) ∩ S consists of at most one element of S because for
distinct f, g ∈ S, if ‖f−h‖∞ < 1/3 and ‖g−h‖∞ < 1/3, we would have the contradiction

1 ≤ ‖f − g‖∞ ≤ ‖f − h‖∞ + ‖h− g‖∞ ≤ 1/3 + 1/3 < 1.

Thus at most only countably many of the elements of S are in⋃
h∈M

B1/3(h) = L∞(RN).

But S is uncountable, so uncountable many of the elements of S are not in this union,
giving a contradiction to the assumed existence of a countably dense subset. �

Corollary. The complete metric space L∞(RN) is does not satisfy the second axiom of
countability, but does satisfies the first axiom of countability.

Proof. By Proposition 18.3 and Proposition 13.2 of Chapter I, the topological space
L∞(RN) does not satisfy the second axiom of countability.

However, at each element f ∈ L∞(RN) there is a countable base at f , namely the balls
Br(f) where r ∈ Q+. �

Relationships among the LP (E) Spaces. We will describe several relationships
among the Lp(E) spaces, starting with how the L∞ norm fits in with the Lp norms.

Proposition. If f ∈ Lr(E)∩L∞(E) for some r ∈ [1,∞), and ‖f‖∞ > 0, then f ∈ Lp(E)
for all p ∈ (r,∞) where

‖f‖p ≤ ‖f‖1−r/p∞ ‖f‖r/pr ,

and
lim
p→∞
‖f‖p = ‖f‖∞.

Proof. For ε > 0 set
Vε = {x ∈ E : |f(x)| > ‖f‖∞ − ε}.

Since ‖f‖∞ <∞, we have µ(Vε) > 0.

For any p ∈ [r,∞) we have

‖f‖pp =

∫
E

|f |p dµ ≥
∫
Vε

|f |p dµ

≥
∫
Vε

(
‖f‖∞ − ε

)p
dµ =

(
‖f‖∞ − ε

)p
µ(Vε).

For p = r this gives
∞ > ‖f‖rr ≥

(
‖f‖∞ − ε)rµ(Vε).

This implies that µ(Vε) <∞, and hence we have that 0 < µ(Vε) <∞.

For arbitrary r < p <∞, we have

‖f‖p ≥
(
‖f‖∞ − ε

)[
µ(Vε)

]1/p
.



On the other hand,

‖f‖pp =

∫
E

|f |p dµ =

∫
E

|f |p−r|f |r dµ

≤
∫
E

‖f‖p−r∞ |f |r dµ = ‖f‖p−r∞
∫
E

|f |r dµ

= ‖f‖p−r∞ ‖f‖rr.

This implies that
‖f‖p ≤ ‖f‖1−r/p∞ ‖f‖r/pr .

Since
lim
p→∞

[
‖f‖1−r/p∞ ‖f‖r/pr

]
= ‖f‖∞,

the set
{‖f‖p : r ≤ p <∞}

is bounded, and so f ∈ Lp(E) for all p ∈ (r,∞).

Since ‖f‖p ≥
(
‖f‖∞ − ε

)[
µ(Vε)

]1/p
and 0 < µ(Vε) <∞, we obtain

lim inf
p→∞

‖f‖p ≥ ‖f‖∞ − ε.

Since ‖f‖p ≤ ‖f‖1−r/p∞ ‖f‖r/pr and limp→∞ ‖f‖1−r/p∞ ‖f‖r/pr = ‖f‖∞, we obtain

lim sup
n→∞

‖f‖p ≤ ‖f‖∞.

Thus for all 0 < ε < ‖f‖∞, we have

‖f‖∞ − ε ≤ lim inf
p→∞

‖f‖p ≤ lim sup
p→∞

‖f‖p ≤ ‖f‖∞.

Therefore we obtain
lim
p→∞
‖f‖p = ‖f‖∞,

which completes the proof. �

Corollary. If f ∈ L1(E) ∩ L∞(E), then f ∈ Lp(E) for all p ∈ (0,∞).


