Math 541 Lecture #40 V.18: If $E \subset \mathbb{R}^N$ and $p \in [1, \infty)$, then $L^p(E)$ is Separable, Part III Relationship Among $L^p(E)$ Spaces, Part I

§18.1: $L^{\infty}(E)$ is not Separable. Unfortunately, the topological space $L^{\infty}(E)$, for a Lebesgue measurable subset E of \mathbb{R}^N of positive measure, is not separable; in this sense, it is too big of a space.

We will demonstrate this lack of separability when $E = \mathbb{R}^N$.

Proposition 18.3. The complete metric space $L^{\infty}(\mathbb{R}^N)$ is not separable.

Proof. For s > 0, let $B_s(0)$ be the open ball of radius s centered at the origin 0 in \mathbb{R}^N . Then for s > r > 0 we have for every $0 < \epsilon \leq 1$ that

$$\mu(\{x \in \mathbb{R}^N : |\chi_{B_s(0)}(x) - \chi_{B_r(0)}(x)| > 1 - \epsilon\}) = \mu(B_s(0) - B_r(0)) = \mu(B_s(0)) - \mu(B_r(0)) > 0.$$

This implies that

$$\|\chi_{B_s(0)} - \chi_{B_r(0)}\|_{\infty}$$

= $\inf\{k \in \mathbb{R} : \mu(\{x \in \mathbb{R}^N : |\chi_{B_s(0)}(x) - \chi_{B_r(0)}(x)| > k\}) = 0\}$
 $\geq 1.$

[What is $\|\chi_{B_s(0)} - \chi_{B_r(0)}\|_p$ for $p \in [1, \infty)$? It is $\mu(B_s(0)) - \mu(B_r(0))$ which goes to zero as $s \to r$.]

Consider the uncountable collection

$$S = \{\chi_{B_s(0)} : s > 0\} \subset L^{\infty}(\mathbb{R}^N),$$

for which we have that for every $f, g \in S$ with $f \neq g$ there holds $||f - g||_{\infty} \ge 1$. Suppose there is a countable subset M of $L^{\infty}(\mathbb{R}^N)$ for which $\overline{M} = L^{\infty}(\mathbb{R}^N)$.

Then for each $f \in L^{\infty}(\mathbb{R}^N)$ we have by the denseness of M that for every open ball

$$B_{\epsilon}(f) = \{g \in L^{\infty}(\mathbb{R}^N) : ||f - g||_{\infty} < \epsilon\}$$

there exists $h \in M$ such that $h \in B_{\epsilon}(f)$.

In particular, this means that for each $f \in L^{\infty}(\mathbb{R}^N)$ there exists an $h \in M$ such that $f \in B_{1/3}(h) = \{f \in L^{\infty}(\mathbb{R}^N) : ||f - h||_{\infty} < 1/3\}.$

Thus by the denseness of M in $L^\infty(\mathbb{R}^N)$ we have

$$L^{\infty}(\mathbb{R}^N) = \bigcup_{h \in M} B_{1/3}(h).$$

For each $h \in M$ the set $B_{1/3}(h) \cap S$ consists of at most one element of S because for distinct $f, g \in S$, if $||f-h||_{\infty} < 1/3$ and $||g-h||_{\infty} < 1/3$, we would have the contradiction

$$1 \le \|f - g\|_{\infty} \le \|f - h\|_{\infty} + \|h - g\|_{\infty} \le 1/3 + 1/3 < 1.$$

Thus at most only countably many of the elements of S are in

$$\bigcup_{h \in M} B_{1/3}(h) = L^{\infty}(\mathbb{R}^N)$$

But S is uncountable, so uncountable many of the elements of S are not in this union, giving a contradiction to the assumed existence of a countably dense subset. \Box

Corollary. The complete metric space $L^{\infty}(\mathbb{R}^N)$ is does not satisfy the second axiom of countability, but does satisfies the first axiom of countability.

Proof. By Proposition 18.3 and Proposition 13.2 of Chapter I, the topological space $L^{\infty}(\mathbb{R}^N)$ does not satisfy the second axiom of countability.

However, at each element $f \in L^{\infty}(\mathbb{R}^N)$ there is a countable base at f, namely the balls $B_r(f)$ where $r \in \mathbb{Q}^+$.

Relationships among the $L^{P}(E)$ Spaces. We will describe several relationships among the $L^{p}(E)$ spaces, starting with how the L^{∞} norm fits in with the L^{p} norms.

Proposition. If $f \in L^r(E) \cap L^{\infty}(E)$ for some $r \in [1, \infty)$, and $||f||_{\infty} > 0$, then $f \in L^p(E)$ for all $p \in (r, \infty)$ where

$$||f||_p \le ||f||_{\infty}^{1-r/p} ||f||_r^{r/p}$$

and

$$\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty}.$$

Proof. For $\epsilon > 0$ set

$$V_{\epsilon} = \{ x \in E : |f(x)| > ||f||_{\infty} - \epsilon \}$$

Since $||f||_{\infty} < \infty$, we have $\mu(V_{\epsilon}) > 0$.

For any $p \in [r, \infty)$ we have

$$\begin{split} \|f\|_p^p &= \int_E |f|^p \ d\mu \ge \int_{V_{\epsilon}} |f|^p \ d\mu \\ &\ge \int_{V_{\epsilon}} \left(\|f\|_{\infty} - \epsilon \right)^p d\mu = \left(\|f\|_{\infty} - \epsilon \right)^p \mu(V_{\epsilon}). \end{split}$$

For p = r this gives

$$\infty > \|f\|_r^r \ge (\|f\|_\infty - \epsilon)^r \mu(V_\epsilon).$$

This implies that $\mu(V_{\epsilon}) < \infty$, and hence we have that $0 < \mu(V_{\epsilon}) < \infty$. For arbitrary r , we have

$$||f||_p \ge \left(||f||_{\infty} - \epsilon\right) \left[\mu(V_{\epsilon})\right]^{1/p}.$$

On the other hand,

$$\begin{split} \|f\|_{p}^{p} &= \int_{E} |f|^{p} \ d\mu = \int_{E} |f|^{p-r} |f|^{r} \ d\mu \\ &\leq \int_{E} \|f\|_{\infty}^{p-r} |f|^{r} \ d\mu = \|f\|_{\infty}^{p-r} \int_{E} |f|^{r} \ d\mu \\ &= \|f\|_{\infty}^{p-r} \|f\|_{r}^{r}. \end{split}$$

This implies that

$$||f||_p \le ||f||_{\infty}^{1-r/p} ||f||_r^{r/p}.$$

Since

$$\lim_{p \to \infty} \left[\|f\|_{\infty}^{1-r/p} \|f\|_{r}^{r/p} \right] = \|f\|_{\infty}$$

the set

$$\{\|f\|_p : r \le p < \infty\}$$

is bounded, and so $f \in L^p(E)$ for all $p \in (r, \infty)$. Since $||f||_p \ge (||f||_{\infty} - \epsilon) [\mu(V_{\epsilon})]^{1/p}$ and $0 < \mu(V_{\epsilon}) < \infty$, we obtain $\liminf_{p \to \infty} ||f||_p \ge ||f||_{\infty} - \epsilon.$

Since $||f||_p \le ||f||_{\infty}^{1-r/p} ||f||_r^{r/p}$ and $\lim_{p\to\infty} ||f||_{\infty}^{1-r/p} ||f||_r^{r/p} = ||f||_{\infty}$, we obtain $\limsup_{n\to\infty} ||f||_p \le ||f||_{\infty}$.

Thus for all $0 < \epsilon < ||f||_{\infty}$, we have

$$||f||_{\infty} - \epsilon \le \liminf_{p \to \infty} ||f||_p \le \limsup_{p \to \infty} ||f||_p \le ||f||_{\infty}$$

Therefore we obtain

$$\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty},$$

which completes the proof.

Corollary. If $f \in L^1(E) \cap L^{\infty}(E)$, then $f \in L^p(E)$ for all $p \in (0, \infty)$.