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Abstract

Let φ and f be functions in the Laguerre-Pólya class. Write φ(z) = e−αz2
φ1(z) and

f(z) = e−βz2
f1(z), where φ1 and f1 have genus 0 or 1 and α, β ≥ 0. If αβ < 1/4

and φ has infinitely many zeros, then φ(D)f(z) has only simple real zeros, where D
denotes differentiation.
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1 Introduction

In this paper we answer a question of Craven and Csordas stated in [1] re-
garding the simplicity of the zeros of φ(D)f(z), where both φ and f are in
the Laguerre-Pólya class and D denotes differentiation. The Laguerre-Pólya
class, denoted LP, consists of the entire functions having only real zeros with
Weierstrass products of the form

czmeαz−βz2 ∏
k

(
1− z

αk

)
ez/αk ,

where c, α, β, αk are real, β ≥ 0, αk 6= 0, m is a nonnegative integer, and∑∞
k=1 1/α2

k < ∞. An entire function belongs to LP if and only if it is the
uniform limit on compact sets of a sequence of real polynomials having only
real zeros [2, Thm. 3, p. 331].

One of the reasons for studying the Laguerre-Pólya class is its relationship to
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the Riemann zeta function. Let

ξ(s) =
1

2
s(s− 1)π−s/2Γ(s/2)ζ(s),

where ζ(s) is the Riemann zeta function. Then ξ(1/2 + iz) is an even entire
function of genus 1 that is real for real z. The Riemann hypothesis, which
predicts that the zeros of ξ(s) have real part 1/2, can be stated as ξ(1/2+iz) ∈
LP. Furthermore, evidence suggests that most, if not all, of the zeros of ξ(s)
are simple. Hence, functions in LP with simple zeros are especially interesting.

For φ(z) =
∑∞

k=0 akz
k ∈ LP and f ∈ LP we consider the differential operator

φ(D) defined by

φ(D)f(z) =
∞∑

k=0

akf
(k)(z).

With suitable hypotheses φ(D)f(z) ∈ LP (see Lemma 2 below). There are
several cases in which the zeros of φ(D)f(z) are known to be simple. Craven
and Csordas proved that if φ and f have orders less than 2, if φ has infinitely
many zeros, and if there is a bound on the multiplicity of the zeros of f , then
φ(D)f(z) has only simple real zeros [1, Thm. 4.6]. They also showed that if
φ and f have orders less than 2, if φ has infinitely many zeros, and if the
canonical product representation of φ has genus zero, then φ(D)f(z) has only
simple real zeros [1, Thm. 4.7]. In the same paper they state the open problem
of whether φ(D)f(z) has simple zeros without the extra hypothesis bounding
the order of zeros of f or the hypothesis that φ has genus zero [1, p. 819].

In this paper we answer that question in the affirmative with the following
theorem:

Theorem 1 Let φ and f be in LP. Write φ(z) = e−αz2
φ1(z) and f(z) =

e−βz2
f1(z), where φ1 and f1 have genus 0 or 1 and α, β ≥ 0. If αβ < 1/4 and

φ has infinitely many zeros, then φ(D)f(z) has only simple real zeros.

This theorem is proved in §3.

We remark that the hypothesis αβ < 1/4 in Theorem 1 is necessary. The
term 1/4 arises in proving the convergence of the series defining φ(D)f(z) as
in Lemma 3.1 in [1, p. 806] or Theorem 8 in [2, p. 360]. On the other hand,
if the Weierstrass product for φ contains the genus two factor e−αz2

and if f
has order less than two, the assumption that φ has infinitely many zeros is
not necessary. Theorem 3.10 in [1] states that if α > 0 and if g is a function
in LP of order less than 2, then the zeros of e−αD2

g(z) are simple and real.
Consequently, if φ(z) = e−αz2

φ1(z) where α > 0 and φ1(z) has genus less than

two, then φ(D)f(z) = e−αD2
(
φ1(D)f(z)

)
has only simple zeros even if φ1(z)

has finitely many zeros. If φ lacks the genus two factor e−αz2
and has finitely

many zeros, the conclusion of the theorem does not hold.
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2 Preliminaries

For φ(z) =
∑∞

k=0 akz
k ∈ LP and f ∈ LP it is important to know when the

expression

φ(D)f(z) =
∞∑

k=0

akf
(k)(z)

makes sense. For our purposes, the following well known result will suffice.

Lemma 2 Write φ(z) = e−αz2
φ1(z) and f(z) = e−βz2

f1(z), where φ1(z) and
f1(z) have genus 0 or 1 and α, β ≥ 0. If αβ < 1/4, then φ(D)f(z) ∈ LP.

Proof. See Levin [2, Thm. 8, p. 360]. 2

Lemma 2 shows that under the assumptions of Theorem 1 the expression
φ(D)f(z) represents a function in the Laguerre-Pólya class. Thus, φ(D)f(z)
has only real zeros. A natural question to ask is whether the zeros are also
simple. As the convergence of the sum defining φ(D)f(z) is not in question,
the proof of Theorem 1 in the following section focuses solely on the question
of simplicity.

3 Proof of Theorem 1

In this section we will prove Theorem 1. The proof builds upon results from
the paper of Craven and Csordas [1] and upon well known facts about entire
function as in Levin [2].

The basic outline of the proof of Theorem 1 is as follows: We begin by studying
the effect of individual factors in the Weierstrass product for φ(D) on f(z).
Thus, in Lemmas 3 through 5, we consider the expression h = f − α−1f ′. We
show that if h has a zero of order m ≥ 2 at x0, then f has a zero of order at
least m + 1 at x0. This fact will be used to prove Lemma 6 which says that
in a fixed interval the expression

∏n
k=1(1 − D

αk
)f(z) has only simple zeros for

sufficiently large n. This result is extended in Lemma 7 through Lemma 10 to
show that if φ(z) =

∏∞
k=1(1− z

αk
) is of genus 0, then φ(D)f(z) has only simple

real zeros. Finally, in Lemma 11 the result is extended to the more general
case, stated in the hypotheses of Theorem 1, to show that φ(D)f(z) has only
simple real zeros. This proves Theorem 1. We will now proceed with the proof.

Lemma 3 Let f ∈ LP and let α 6= 0 be real. Then

(1) f ′ ∈ LP, and
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(2) h = (I − α−1D)f = f − α−1f ′ ∈ LP.

Proof. Although this is a special case of Lemma 2, we recall the elementary
argument. Since f is the uniform limit of a sequence of real polynomials {fn}
having only real zeros, f ′ is the uniform limit of the sequence {f ′n}. Because
each fn has only real zeros, each f ′n also has only real zeros. Hence, the zeros
of f ′ are also real, and f ′ ∈ LP . Then

h(z) = −α−1eαzD
(
e−αzf(z)

)
.

So, h is also in LP. 2

Lemma 4 (Laguerre Inequalities) Let f ∈ LP. Then(
f (n)(z)

)2
− f (n−1)(z)f (n+1)(z) ≥ 0, −∞ < z <∞, n ≥ 1.

Equality holds if and only if f (n−1)(z) is of the form ceαz or if z is a multiple
root of f (n−1)(z).

Proof. We follow the explanation in [3, p. 69]. If f(z) is of the form f(z) =
ceαz, then [f ′(z)]2 − f(z)f ′′(z) = 0 for all z. Otherwise, we express f(z) as a
Weierstrass product:

f(z) = czmeαz−βz2 ∏
k

(1− z/αk)e
z/αk .

The logarithmic derivative of f(z) is

f ′(z)

f(z)
=
m

z
+ α− 2βz +

∞∑
k=0

(
1

z − αk

+
1

αk

)
.

Hence,

d

dz

(
f ′(z)

f(z)

)
=
f ′′(z)f(z)−

(
f ′(z)

)2

(
f(z)

)2 = −m
z2
− 2β −

∞∑
k=1

1

(z − αk)2
< 0.

This shows that if f(z) is not of the form ceαz and if z is real but not a root
of f , then (

f ′(z)
)2
− f(z)f ′′(z) > 0. (1)

By continuity (
f ′(z)

)2
− f(z)f ′′(z) ≥ 0 (2)

for all real z with equality if and only if f(z) is of the form ceαz or z is a
multiple root of f . Since the derivative of a function in LP is also in LP,
inequalities (1) and (2) apply to the derivatives of f . 2
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Lemma 5 (Lemma 4.2 [1]) Let f ∈ LP and let h(z) = f(z) − α−1f ′(z),
where α 6= 0 is real. If h(z) has a zero of order m ≥ 2 at x0, then f(z) has a
zero of order at least m+ 1 at x0. Consequently, if the zeros of f are simple,
then the zeros of h are also simple.

Proof. Since h(z) has a zero of order m at x0

0 = h(k)(x0) = f (k)(x0)− α−1f (k+1)(x0)

for 0 ≤ k ≤ m− 1. This implies that

f (k)(x0) = αkf(x0)

for 0 ≤ k ≤ m. Then for 1 ≤ k ≤ m− 1(
f (k)(x0)

)2
−f (k−1)(x0)f

(k+1)(x0) =
(
αkf(x0)

)2
−
(
αk−1f(x0)

)(
αk+1f(x0)

)
= 0.

Since f, f ′, . . . , f (m−1) are not exponential functions (otherwise h could not
have a zero of order m), the Laguerre Inequalities (Lemma 4) imply that

f (k)(x0) = 0

for 0 ≤ k ≤ m. In other words, f has a zero of order at least m+ 1 at x0. 2

Lemma 6 Let φn(z) =
∏n

k=1

(
1− z

αk

)
, where α1, α2, α3, . . . are real and nonzero,

and let f ∈ LP. Given A > 0 there exists N such that if n ≥ N , then
φn(D)f(z) has only simple zeros in the interval (−A,A).

Proof. Assume, to the contrary, that for some A > 0 there is a sequence
0 < n1 < n2 < n3 < · · · such that φnj

(D)f(z) has a zero xj of multiplicity at
least two in the interval (−A,A). By Lemma 5, xj is a zero of f(z) of order
at least nj + 2. Since the sequence nj + 2 is unbounded, f(z) has zeros of
arbitrarily large order in the finite interval (−A,A). This is impossible since
f(z) is entire. 2

We will extend the previous lemma to show that if φ ∈ LP and if φ has genus
zero, then φ(D)f(z) has simple zeros. This is shown in Lemma 10. Lemmas 7
through 9 provide several technical results needed for the proof of Lemma 10.

Lemma 7 Assume f ∈ LP is of the form

f(z) = czmeαz−σz2
∞∏

k=1

(
1− z

βk

)
ez/βk .
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and assume ε > 0. Then

|f (n)(z)| ≤ n!Aε

(
2e(σ + ε)

n

)n/2

for |z| ≤ R =
√

n
2(σ+ε)

, where Aε is a constant depending on ε.

Proof. As explained in [2, p. 13], the product

zmeαz
∞∏

k=1

(
1− z

βk

)
ez/βk

(which lacks the term e−σz2
) is of order at most 2 and of minimal type. Thus

f(z) is of order 2 and normal type σ. Therefore, given ε > 0 there exists Aε

such that
Mf (R) = max

|z|≤R
|f(z)| < Aε exp

(
(σ + ε)R2

)
for all R. By Cauchy’s inequality, for |z| ≤ R,

|f (n)(z)| ≤ n!Mf (R)

Rn
≤
n!Aε exp

(
(σ + ε)R2

)
Rn

.

The last expression is minimized when R =
√

n
2(σ+ε)

. 2

Lemma 8 For each n let

ψn(z) =
∞∏

k=n+1

(
1− z

αk

)
,

where
∑∞

k=1 |αk|−1 <∞. Then

|ψ(k)
n (0)| ≤ k!

(
eBn

k

)k

,

where Bn =
∑∞

j=n+1 |αj|−1.

Proof. Let M(R,ψn) = max|z|≤R |ψn(z)|. Taking the logarithm of the Weier-
strass product for ψn gives

logM(R,ψn) ≤
∞∑

k=n+1

log(1 + |R/αk|) ≤
∞∑

k=n+1

|R/αk| = BnR.

By Cauchy’s inequality we obtain, for |z| ≤ R,

|ψ(k)
n (z)| ≤ k!M(R,ψn)

Rk
≤ k! exp(BnR)

Rk
.
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The last expression is minimized if R = k/Bn. 2

Lemma 9 Let ψn be as in the previous lemma and let f ∈ LP. Then ψn(D)f(z)
converges to f(z) uniformly on compact sets.

Proof. Let K be any compact subset of C and let |z| < R for all z ∈ K.
Then

ψn(D)f(z) =
∞∑

k=0

ψ(k)
n (0)

k!
f (k)(z).

Now let ε > 0 as in Lemma 7. Then

|ψn(D)f(z)−f(z)| ≤
∑

1≤k≤2(σ+ε)R2

|ψ(k)
n (0)|
k!

|f (k)(z)|+
∑

k>2(σ+ε)R2

|ψ(k)
n (0)|
k!

|f (k)(z)|.

The reason for splitting the sum is that when k > 2(σ+ ε)R2 the bound from
Lemma 7 applies. Applying the bounds in Lemma 7 and 8 gives

|ψn(D)f(z)− f(z)| ≤∑
1≤k≤2(σ+ε)R2

(
eBn

k

)k k!M(R, f)

Rk
+

∑
k>2(σ+ε)R2

(
eBn

k

)k

k!Aε

(
2e(σ + ε)

k

)k/2

The second summation converges by the root test from elementary calculus.
Since Bn → 0 as n → ∞, the right hand side of the inequality can be made
arbitrarily small when |z| < R by taking n sufficiently large. This proves the
uniform convergence. 2

Lemma 10 Let φ(z) =
∏∞

k=1

(
1− z

αk

)
∈ LP and let f be any function in

LP. Then φ(D)f(z) has only simple real zeros.

Proof. Let A be any positive number. We will show that φ(D)f(z) has only
simple zeros in the interval (−A,A). We factor φ(z) as

φ(z) = φn(z)θn,m(z)ψm(z)

where 1 ≤ n < m and where

φn(z) =
n∏

k=1

(
1− z

αk

)
, θn,m(z) =

m∏
k=n+1

(
1− z

αk

)
, ψm(z) =

∞∏
k=m+1

(
1− z

αk

)
.

Recalling that products in LP correspond to composition of differential oper-
ators we have

φ(D)f(z) = φn(D)
[
θn,m(D)

(
ψm(D)f(z)

)]
.
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As the composition of these differential operators is commutative, the terms
φn(D), θn,m(D), and ψm(D) can be written in any order. According to Lemma 6,
there is an N such that φN(D)f(z) has only simple zeros in the interval

(−A,A). According to Lemma 9, ψm(D)
(
φN(D)f(z)

)
converges uniformly

on compact sets to φN(D)f(z). By Hurwitz’s Theorem the simple zeros of

φN(D)f(z) are limit points of the zeros of ψm(D)
(
φN(D)f(z)

)
. Thus, there

exists an M > N such that ψM(D)
(
φN(D)f(z)

)
has only simple zeros in the

interval (−A,A). Then by Lemma 5

θN,M(D)
[
ψM(D)

(
φN(D)f(z)

)]
= φ(D)f(z)

has only simple zeros in the interval (−A,A). Since A is arbitrary this proves
the theorem. 2

Lemma 11 Let φ and f be in LP. Write φ(z) = e−αz2
φ1(z) and f(z) =

e−βz2
f1(z), where φ1 and f1 have genus 0 or 1 and α, β ≥ 0. If αβ < 1/4 and

φ has infinitely many zeros, then φ(D)f(z) has only simple real zeros.

Proof. Since φ has infinitely many zeros, there is a subsequence {αk} of zeros
of φ such that

∑∞
k=1 |αk|−1 <∞. Write φ as

φ(z) = φ0(z)φ2(z),

where φ0(z) =
∏∞

k=1

(
1− z

αk

)
. Note that φ0 has genus 0 and φ2 has genus ≤ 2.

By Lemma 2 φ2(D)f(z) is in LP. Then by Lemma 10

φ(D)f(z) = φ0(D)
[
φ2(D)f(z)

]
is in LP and has only simple zeros. 2

This completes the proof of Theorem 1.
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