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Abstract

Let ¢ and f be functions in the Laguerre-Pélya class. Write ¢(z) = 6_0‘229251(2) and
flz) = e*ﬂzzfl(z), where ¢; and f; have genus 0 or 1 and o, 5 > 0. If a8 < 1/4
and ¢ has infinitely many zeros, then ¢(D)f(z) has only simple real zeros, where D
denotes differentiation.
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1 Introduction

In this paper we answer a question of Craven and Csordas stated in [1] re-
garding the simplicity of the zeros of ¢(D)f(z), where both ¢ and f are in
the Laguerre-Polya class and D denotes differentiation. The Laguerre-Polya
class, denoted LP, consists of the entire functions having only real zeros with
Weierstrass products of the form

szeozz—ﬁz2 H (1 . Z) GZ/ak,

A Qg

where ¢, a, 3, o are real, 5 > 0, ag, # 0, m is a nonnegative integer, and
S, 1/ai < oco. An entire function belongs to LP if and only if it is the
uniform limit on compact sets of a sequence of real polynomials having only
real zeros [2, Thm. 3, p. 331].

One of the reasons for studying the Laguerre-Pélya class is its relationship to
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the Riemann zeta function. Let
1
£(s) = 58(8 — 1) *?D(s/2)¢(s),

where ((s) is the Riemann zeta function. Then £(1/2 + iz) is an even entire
function of genus 1 that is real for real z. The Riemann hypothesis, which
predicts that the zeros of £(s) have real part 1/2, can be stated as £(1/2+1iz) €
LP. Furthermore, evidence suggests that most, if not all, of the zeros of £(s)
are simple. Hence, functions in £P with simple zeros are especially interesting.

For ¢(z) = Y02, arz® € LP and f € LP we consider the differential operator
(D) defined by

o0

o(D)f(2) = Y arfP(2).

k=0

With suitable hypotheses ¢(D)f(z) € LP (see Lemma 2 below). There are
several cases in which the zeros of ¢(D)f(z) are known to be simple. Craven
and Csordas proved that if ¢ and f have orders less than 2, if ¢ has infinitely
many zeros, and if there is a bound on the multiplicity of the zeros of f, then
®(D)f(2) has only simple real zeros [1, Thm. 4.6]. They also showed that if
¢ and f have orders less than 2, if ¢ has infinitely many zeros, and if the
canonical product representation of ¢ has genus zero, then ¢(D)f(z) has only
simple real zeros [1, Thm. 4.7]. In the same paper they state the open problem
of whether ¢(D)f(z) has simple zeros without the extra hypothesis bounding
the order of zeros of f or the hypothesis that ¢ has genus zero [1, p. 819].

In this paper we answer that question in the affirmative with the following
theorem:

Theorem 1 Let ¢ and f be in LP. Write ¢(z) = e ¢1(2) and f(z) =
e*ﬁZQfl(z), where ¢1 and fi have genus 0 or 1 and o, 3 > 0. If aff < 1/4 and
¢ has infinitely many zeros, then ¢(D)f(z) has only simple real zeros.

This theorem is proved in §3.

We remark that the hypothesis a8 < 1/4 in Theorem 1 is necessary. The
term 1/4 arises in proving the convergence of the series defining ¢(D)f(2) as
in Lemma 3.1 in [1, p. 806] or Theorem 8 in [2, p. 360]. On the other hand,
if the Weierstrass product for ¢ contains the genus two factor e and if f
has order less than two, the assumption that ¢ has infinitely many zeros is
not necessary. Theorem 3.10 in [1] states that if @ > 0 and if g is a function
in LP of order less than 2, then the zeros of e*?*g(z) are simple and real.
Consequently, if ¢(z) = e=***¢;(z) where o > 0 and ¢1(z) has genus less than
two, then ¢(D)f(z) = e~*P’ (ngl(D)f(z)) has only simple zeros even if ¢;(z)

has finitely many zeros. If ¢ lacks the genus two factor e and has finitely
many zeros, the conclusion of the theorem does not hold.



2 Preliminaries

For ¢(z) = S22 paxz” € LP and f € LP it is important to know when the
expression

H(D)f(2) =3 arf™(2)
k=0
makes sense. For our purposes, the following well known result will suffice.

Lemma 2 Write ¢(z) = e ¢1(2) and f(z) = e 7% fi(2), where ¢1(z) and
fi(2) have genus 0 or 1 and o, 3 > 0. If a5 < 1/4, then ¢(D)f(z) € LP.

Proof. See Levin [2, Thm. 8, p. 360]. O

Lemma 2 shows that under the assumptions of Theorem 1 the expression
¢(D)f(z) represents a function in the Laguerre-Pdélya class. Thus, ¢(D)f(2)
has only real zeros. A natural question to ask is whether the zeros are also
simple. As the convergence of the sum defining ¢(D)f(z) is not in question,
the proof of Theorem 1 in the following section focuses solely on the question
of simplicity.

3 Proof of Theorem 1

In this section we will prove Theorem 1. The proof builds upon results from
the paper of Craven and Csordas [1] and upon well known facts about entire
function as in Levin [2].

The basic outline of the proof of Theorem 1 is as follows: We begin by studying
the effect of individual factors in the Weierstrass product for ¢(D) on f(z).
Thus, in Lemmas 3 through 5, we consider the expression h = f — a1 f'. We
show that if h has a zero of order m > 2 at x(, then f has a zero of order at
least m 4+ 1 at zy. This fact will be used to prove Lemma 6 which says that
in a fixed interval the expression [];_;(1 — O%) f(2) has only simple zeros for
sufficiently large n. This result is extended in Lemma 7 through Lemma 10 to
show that if ¢(z) = [1;Z;(1 — Z) is of genus 0, then ¢(D) f(z) has only simple
real zeros. Finally, in Lemma 11 the result is extended to the more general
case, stated in the hypotheses of Theorem 1, to show that ¢(D)f(z) has only

simple real zeros. This proves Theorem 1. We will now proceed with the proof.
Lemma 3 Let f € LP and let o # 0 be real. Then

(1) f' € LP, and



(2) h=(I—a'D)f = f —a~'f' € LP.

Proof. Although this is a special case of Lemma 2, we recall the elementary
argument. Since f is the uniform limit of a sequence of real polynomials { f,}
having only real zeros, f’ is the uniform limit of the sequence {f/}. Because
each f,, has only real zeros, each f/ also has only real zeros. Hence, the zeros
of f" are also real, and ' € LP. Then

h(z) = —oz_leo‘zD(e_azf(z)).
So, his also in LP. O
Lemma 4 (Laguerre Inequalities) Let f € LP. Then
(f™(2))

Equality holds if and only if ™V (z) is of the form ce®* or if z is a multiple
root of f™ Y (2).

2 f(n—l)(z)f(nﬂ)(z) >0, —oc0o<z<oo, n>1.

Proof. We follow the explanation in [3, p. 69]. If f(z) is of the form f(z) =
ce® then [f'(2)]? — f(2)f"(z) = 0 for all z. Otherwise, we express f(z) as a
Weierstrass product:

f(z) = czme* P [T — 2/ )e .
k

The logarithmic derivative of f(z) is

f/(z):T:+@—2ﬂz+g< ! +1).

f(2) z— Qo
Hence,

d(f@)zﬂ@ﬂ@—gvﬁ
d=\J(z) (/)

This shows that if f(z) is not of the form ce®* and if z is real but not a root
of f, then

m s 1
:—;—25—2ﬁ<0.

=1 Z — O

2
(1)) = F(2)1"(2) > 0. (1)
By continuity
2
(f'(2)) = F(2)f"(z) = 0 (2)
for all real z with equality if and only if f(z) is of the form ce®® or z is a

multiple root of f. Since the derivative of a function in LP is also in LP,
inequalities (1) and (2) apply to the derivatives of f. O



Lemma 5 (Lemma 4.2 [1]) Let f € LP and let h(z) = f(z) — a™'f'(2),
where o # 0 is real. If h(z) has a zero of order m > 2 at xq, then f(z) has a
zero of order at least m + 1 at xy. Consequently, if the zeros of f are simple,
then the zeros of h are also simple.

Proof. Since h(z) has a zero of order m at x
0= h®(zg) = f®(wo) — a™! &V ()
for 0 < k < m — 1. This implies that
F¥ (o) = a* f (o)

for0<k<m.Thenforl1<k<m-—1

(f(k) (xo))Q_f(k—l)(mo)f(k—i-l)(xo) _ (akf(x0)>2—(ak_lf($o)) (ak+lf($0)> —0.

Since f, f',..., f™ Y are not exponential functions (otherwise h could not
have a zero of order m), the Laguerre Inequalities (Lemma 4) imply that
f(k)<x0) =0

for 0 < k < m. In other words, f has a zero of order at least m + 1 at xg. O

Lemma 6 Let ¢, (2) =115, (1 — a—i), where a, g, 3, . . . are real and nonzero,
and let f € LP. Giwen A > 0 there exists N such that if n > N, then
on(D) f(2) has only simple zeros in the interval (—A, A).

Proof. Assume, to the contrary, that for some A > 0 there is a sequence
0 <mnp <ny <ng<--- such that ¢, ,(D)f(z) has a zero x; of multiplicity at
least two in the interval (—A, A). By Lemma 5, x; is a zero of f(z) of order
at least n; + 2. Since the sequence n; + 2 is unbounded, f(z) has zeros of
arbitrarily large order in the finite interval (—A, A). This is impossible since
f(z) is entire. O

We will extend the previous lemma to show that if ¢ € LP and if ¢ has genus
zero, then ¢(D) f(z) has simple zeros. This is shown in Lemma 10. Lemmas 7
through 9 provide several technical results needed for the proof of Lemma 10.

Lemma 7 Assume f € LP is of the form

f(z) = czme 0% 11 (1 - Z) e*/Pr.
k=1 B



and assume € > 0. Then

2e(0 +¢) n/2
n

UW@HSM&<

for|z] < R = ,/ﬁ, where A, is a constant depending on .

Proof. As explained in [2, p. 13], the product

[e.e]

ZMe* H (1 — ﬂi) e?/ Bk

k=1

(which lacks the term e~?%") is of order at most 2 and of minimal type. Thus
f(z) is of order 2 and normal type o. Therefore, given € > 0 there exists A,
such that

M;(R) = max |f(2)] < A. exp((a + e)R2>

lz|<R

for all R. By Cauchy’s inequality, for |z| < R,

| 2
mes”%ﬁms”&m%$+mﬂ-

The last expression is minimized when R = | /2(0’16). O

Lemma 8 For each n let

where 32, |ar| ™t < oo. Then

OO < k(5

where By, =332, 11 |og| ™"

Proof. Let M(R,,) = max.j<g [1n(2)|. Taking the logarithm of the Weier-
strass product for 1, gives

log M(R,1,) < Y log(1+4 |R/ay]) < > |R/ow| = B,R.
k=n-+1 k=n+1

By Cauchy’s inequality we obtain, for |z| < R,

| |
< KM (R, ,,) < k;.exp(BnR).




The last expression is minimized if R = k/B,. O

Lemma 9 Let 1, be as in the previous lemma and let f € LP. Then ), (D) f(z)
converges to f(z) uniformly on compact sets.

Proof. Let K be any compact subset of C and let |z] < R for all z € K.

Then .
wu(D)fz) =y PO oo,
k=0 :
Now let € > 0 as in Lemma 7. Then
M (0 M (0
INGEVERCIEID DR LI TCICR pR UV EION
1<k<2(c+e€)R? ) k>2(c+€)R? )

The reason for splitting the sum is that when & > 2(o + €) R? the bound from
Lemma 7 applies. Applying the bounds in Lemma 7 and 8 gives

[¥n(D)f(2) = f(2)] <
z (B R xR e (M)

1<k<2(c+e€)R? k>2(c+e)R?

k)2

The second summation converges by the root test from elementary calculus.
Since B,, — 0 as n — oo, the right hand side of the inequality can be made
arbitrarily small when |z| < R by taking n sufficiently large. This proves the
uniform convergence. O

Lemma 10 Let ¢(z) = [I2, (1 — ik) € LP and let f be any function in

«

LP. Then ¢(D)f(z) has only simple real zeros.

Proof. Let A be any positive number. We will show that ¢(D)f(z) has only
simple zeros in the interval (—A, A). We factor ¢(z) as

P(2) = n(2)0nm(2)Vm(2)

where 1 < n < m and where

bn(2) = k}iIl (1 - OZ) L Oum(z) = kﬁl <1 - O“;)  Um(2) = k:]j‘:[+1 (1 - ;) .

Recalling that products in LP correspond to composition of differential oper-
ators we have

&(D)[(2) = 6u(D)|00m(D) (¥m(D)f(2))|.



As the composition of these differential operators is commutative, the terms
On(D), 0p.m (D), and 1y, (D) can be written in any order. According to Lemma 6,
there is an N such that ¢xn(D)f(z) has only simple zeros in the interval

(—A, A). According to Lemma 9, wm(D)(ng(D)f(z)) converges uniformly
on compact sets to ¢n(D)f(z). By Hurwitz’s Theorem the simple zeros of
¢n(D)f(z) are limit points of the zeros of wm(D)<¢N(D)f(z)>. Thus, there

exists an M > N such that ¢y, (D) (QSN(D)f(z)) has only simple zeros in the
interval (—A, A). Then by Lemma 5

Onar(D) [¥ar(D)(¢n (D) f(2))| = @(D)f(2)

has only simple zeros in the interval (—A, A). Since A is arbitrary this proves
the theorem. 0O

Lemma 11 Let ¢ and f be in LP. Write ¢(z) = e ¢1(2) and f(z) =
e_ﬂzzfl(z), where ¢1 and fi have genus 0 or 1 and a, 8 > 0. If af < 1/4 and
¢ has infinitely many zeros, then ¢(D)f(z) has only simple real zeros.

Proof. Since ¢ has infinitely many zeros, there is a subsequence {ay} of zeros
of ¢ such that 372, || ™! < co. Write ¢ as

P(2) = ¢o(2)h2(2),

where ¢g(2) = IT2

1 (1 ) Note that ¢g has genus 0 and ¢, has genus < 2.
By Lemma 2 ¢po(D) f

(2) is in £LP. Then by Lemma 10

$(D)f(2) = 60(D) [$2(D) f(2)]

is in LP and has only simple zeros. O

This completes the proof of Theorem 1.
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