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Abstract

Let ¢ and f be functions in the Laguerre—Pdlya class. Wijte) = e*"‘zqul(z) and f(z) =

e h f1(z), wheregp1 and f1 have genus 0 or 1 and 8 > 0. If o8 < 1/4 and¢ has infinitely many
zeros, the (D) f (z) has only simple real zeros, whebedenotes differentiation.
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we answer a question of Craven and Csordas stated in [1] regarding the
simplicity of the zeros o (D) f (z), where bothp and f are in the Laguerre—Pélya class
and D denotes differentiation. The Laguerre—Pdlya class, denGfgdconsists of the en-
tire functions having only real zeros with Weierstrass products of the form

ez e® P H(l — i>ez/°”‘,

o
X k
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wherec, o, B, o are real 8 > 0, ax # 0,m is a nonnegative integer, aRd;- ; 1/a,f < 00.
An entire function belongs tdP if and only if it is the uniform limit on compact sets of a
sequence of real polynomials having only real zeros [2, Theorem 3, p. 331].

One of the reasons for studying the Laguerre—Pdlya class is its relationship to the Rie-
mann zeta function. Let

£(s) = %s(s — D=2 (s/2)¢(s),

where¢ (s) is the Riemann zeta function. Théxl/2 + iz) is an even entire function of
genus 1 that is real for real The Riemann hypothesis, which predicts that the zeros of
&(s) have real part 22, can be stated &$1/2+iz) € LP. Furthermore, evidence suggests
that most, if not all, of the zeros &f(s) are simple. Hence, functions /P with simple
zeros are especially interesting.

Forg(z) = > 1o arz*¥ € LP and f € LP we consider the differential operatg( D)
defined by

oo
p(D)f()=> arfP).

k=0
With suitable hypotheses(D) f (z) € LP (see Lemma 2 below). There are several cases in
which the zeros o (D) f (z) are known to be simple. Craven and Csordas proved tiat if
and f have orders less than 2 d¢fhas infinitely many zeros, and if there is a bound on the
multiplicity of the zeros off, then¢ (D) f (z) has only simple real zeros [1, Theorem 4.6].
They also showed that if and f have orders less than 2,df has infinitely many zeros,
and if the canonical product representatiorpdias genus zero, thef(D) f (z) has only
simple real zeros [1, Theorem 4.7]. In the same paper they state the open problem of
whether¢ (D) f (z) has simple zeros without the extra hypothesis bounding the order of
zeros of f or the hypothesis that has genus zero [1, p. 819].

In this paper we answer that question in the affirmative with the following theorem.

Theorem 1. Let ¢ and f be in £P. Write ¢(z) = e % ¢1(z) and f(z) = e~ P% f1(2),
where¢; and f1 have genu$ or 1 anda, 8 > 0. If o < 1/4 and ¢ has infinitely many
zeros, thep (D) f (z) has only simple real zeros.

This theorem is proved in Section 3.

We remark that the hypothesig < 1/4 in Theorem 1 is necessary. The teryjd hrises
in proving the convergence of the series defingi@®) f (z) asin Lemma 3.1in [1, p. 806]
or Theorem 8 in [2, p. 360]. On the other hand, if the Weierstrass produgt éontains
the genus two factoe—<* and if f has order less than two, the assumption thaias
infinitely many zeros is not necessary. Theorem 3.10 in [1] states that-iD and if g
is a function inLP of order less than 2, then the zerOSeGP‘DZg(z) are simple and real.
Consequently, it (z) = e““qul(z), wherea > 0 and¢g1(z) has genus less than two, then
¢(D)f(z) = e*“DZ(qSl(D)f(z)) has only simple zeros even ¢fi(z) has finitely many

zeros. If¢ lacks the genus two facter®:* and has finitely many zeros, the conclusion of
the theorem does not hold.
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2. Preliminaries

Forg(z) =Y togakz’ € LP and f € LP itis important to know when the expression

d(D)f ()= arf® ()

k=0
makes sense. For our purposes, the following well-known result will suffice.

Lemma 2. Write ¢ (z) = e*‘“ngl(z) and f(z) = e*ﬁzzfl(z), whereg1(z) and f1(z) have
genusDor Landa, 8 > 0. If aB < 1/4, theng (D) f (z) € LP.

Proof. See Levin [2, Theorem. 8, p. 360]O0

Lemma 2 shows that under the assumptions of Theorem 1 the expreggdoif (z)
represents a function in the Laguerre—Pdélya class. ThUB) f (z) has only real zeros.
A natural question to ask is whether the zeaos also simple. As the convergence of the
sum definingp (D) f (z) is notin question, the proof of Theorem 1 in the following section
focuses solely on the question of simplicity.

3. Proof of Theorem 1

In this section we will prove Theorem 1. The proof builds upon results from the paper
of Craven and Csordas [1] and upon well-known facts about entire function as in Levin [2].
The basic outline of the proof of Theoremidlas follows: We begin by studying the
effect of individual factors in the Weierstrass product qD) on f(z). Thus, in Lem-
mas 3-5, we consider the expressioa f —a~1 f/. We show that if: has a zero of order
m > 2 atxp, then f has a zero of order at least+ 1 atxp. This fact will be used to prove
Lemma 6 which says that in a fixed interval the expres§idn, (1 — D/ax) f(z) has only
simple zeros for sufficiently large This result is extended in Lemmas 7—-10 to show that if
#(2) =121 — z/ox) is of genus 0, thep (D) f (z) has only simple real zeros. Finally,
in Lemma 11 the result is extended to the more general case, stated in the hypotheses of
Theorem 1, to show that(D) f (z) has only simple real zeros. This proves Theorem 1. We
will now proceed with the proof.

Lemma 3. Let f € LP and lete # 0 be real. Then

Q) f/eLP,and
2 h=U—-a D) f=f—-alf eLP.

Proof. Although this is a special case of Lemma 2, we recall the elementary argument.
Sincef is the uniform limit of a sequence of real polynomigfs} having only real zeros,

£’ is the uniform limit of the sequendg,}. Because eaclf, has only real zeros, eadfj

also has only real zeros. Hence, the zerog'ddre also real, and’ € LP. Then
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h(z) = —a 1e*D(e™* £ ().
So,hisalsoinfP. O
Lemma 4 (Laguerre inequalities).et f € LP. Then
(f"@)° = fO V@ D) 20, —oo<z<oo, n>1.

Equality holds if and only iff *~1 (z) is of the formce®? or if z is a multiple root of
o Y@.

Proof. We follow the explanation in [3, p. 69]. If (z) is of the form f(z) = ce*?, then
[f' ()% — f(z) f"(z) =0 for all z. Otherwise, we express(z) as a Weierstrass product

f2) = szeaz—/szz l_[(l _ z/()lk)ez/ak.
k

The logarithmic derivative of (z) is

flm) m > 1 1
=2 a2 =).
f@ z T ﬁz+l§]( +Olk)

T — O
Hence,
/ " N 00

d%(f‘((zz; ) = (Z)f((;)(zn(zf - ERL ; E —1ak)2 =0
This shows that iff (z) is not of the formce®? and if z is real but not a root of', then

(f'@)* = @ f" @) >0. (1)
By continuity

(f'@)* = f@f"(2) >0 )

for all real z with equality if and only if f (z) is of the formce®* or z is a multiple root
of f. Since the derivative of a function ifiP is also inLP, inequalities (1) and (2) apply
to the derivatives off. O

Lemma5[1, Lemma 4.2]Let f € LP and leth(z) = f(z) —a 1 f'(z), wherea # 0 is
real. If h(z) has a zero of ordem > 2 at xo, then f(z) has a zero of order at least + 1
at xg. Consequently, if the zeros gfare simple, then the zeros bfare also simple.
Proof. Sinceh(z) has a zero of orden at xq,

0=r® (o) = £ (x0) —a " F** P (x0)
for 0 <k <m — 1. This implies that

f® (xo) = * f(x0)
forO<k<m.Thenfor 1<k <m—1,
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(F®x0))? = £E D (xg) £ 4D (x0)
= (" f(x0))? = (@£ (x0)) (X1 (x0)) =0.

Sincef, f/, ..., £~ are not exponential functions (otherwiseould not have a zero
of orderm), the Laguerre inequalities (Lemma 4) imply that

f®(x0)=0
for 0 < k <m. In other words,f has a zero of order at least+ 1 atxg. O

Lemma 6. Let ¢, (z) = [[;_1(1 — z/ax), Whereas, a2, a3, ... are real and nonzero, and
let f € LP. GivenA > 0 there existsN such that ifn > N, theng, (D) f(z) has only
simple zeros in the interval-A, A).

Proof. Assume, to the contrary, that for sorde> O there is a sequence<Onj; < np <
n3 < --- such thatg,; (D) f(z) has a zeroc; of multiplicity at least two in the interval
(—A, A). By Lemma 5,x; is a zero off (z) of order at least:; + 2. Since the sequence
nj+2is unboundedf (z) has zeros of arbitrarily large order in the finite inter¢ald, A).
This is impossible sincg (z) is entire. O

We will extend the previous lemma to show thapi€ £P and if¢ has genus zero, then
¢ (D) f(z) has simple zeros. This is shown in Lemma 10. Lemmas 7-9 provide several
technical results needed for the proof of Lemma 10.

Lemma 7. Assumef € LP is of the form
2 b4
f(Z) — CZmEOZZ—O'Z <1_ —>€Z/'Bk
,!:[1 Bk

and assume > 0. Then
2 n/2
1F™ )] én!AE(M>
n

for|z| <R whereA¢ is a constant depending ean

_ n
T\ 20+e€)’

Proof. As explainedin [2, p. 13], the product

o0
M et l_[ (1 _ i)ez/ﬁk

i1 Br
(which lacks the term‘”z) is of order at most 2 and of minimal type. Thii$z) is of
order 2 and normal type. Therefore, giver > 0 there existA, such that
M¢(R) = ‘n|"|2§|f(z)| < Acexp((o + e)RZ)
X

for all R. By Cauchy’s inequality, fofz| < R,

niMy(R) _ nlAcexp((o + €)R?)
R" = R" :

™) <
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The last expression is minimized wh&n= O

_n_
2(0+€)"

Lemma 8. For eachn let

@@= [] (1— aik>

k=n+1

where 72, |ax| ™ < co. Then

k
1y 00| <k!(ef”> ,

whereB, =52, 1 lo;|t

Proof. Let M (R, ¥,) = maX; <k |¥n(2)|. Taking the logarithm of the Weierstrass product
for ¢, gives

log M (R, ) < Z log(1+ |R/axl) < Z |R/e| = By R.
k=n+1 k=n+1

By Cauchy’s inequality we obtain, fog| < R

K'\M(R,y,) _ k!'exp(B,R)
k
| < —g— <

The last expression is minimized&=k/B,. O

Lemma9. Lety, be as in the previous lemma and jet £LP. Theny,, (D) f (z) converges
to f(z) uniformly on compact sets.

Proof. Let K be any compact subset@fand let|z| < R forall z € K. Then

(k) 0
Yn(D)f(z )-Z v ( IO o),

Now lete > 0 as in Lemma 7. Then

|¥n(D) f(2) — f(2)]

|1//n (0 Ilﬁn ©]
< ) U AGIE DS TEEANCL
1<k<2(c+€)R? k>2(c+€)R?

The reason for splitting the sum is that whies- 2(c + ¢) R? the bound from Lemma 7
applies. Applying the bounds in Lemmas 7 and 8 gives

[ (D) f(2) — f(@)|

eB, \"k'M(R, ) eB, \F 2e(o +€)\¥/?
< Y ()RR T () e(PT)

1<k <2(0 +€)R? k>2(c+€)R?
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The second summation converges by the root test from elementary calculusBginc®
asn — 00, the right-hand side of the inequality can be made arbitrarily small wtien R
by takingn sufficiently large. This proes the uniform convergencen

Lemma 10. Let ¢ (z) = [, (1 — z/ax) € LP and let f be any function inCP. Then
¢ (D) f (z) has only simple real zeros.

Proof. Let A be any positive number. We will show thatD) f (z) has only simple zeros
in the interval(— A, A). We factor¢ (z) as

@(z) =y (Z)en,m(z)wm (2),
where 1< n < m and where

n

¢n(z)=1"[<1—aik>, Oom@ =[] (1—aik>,

k=1 k=n+1

Ym(2) = l_[ <1_ O%{)

k=m+1

Recalling that products igP correspond to composition of differential operators we have

¢(D) f(2) = ¢n(D)[6n,m (D) (¥ (D) f (2))]-

As the composition of these differential operators is commutative, the tepaR),
6n.m(D), and ¥, (D) can be written in any order. According to Lemma 6, there is an
N such thatpy (D) f(z) has only simple zeros in the intervé+A, A). According to
Lemma 9,v,,(D)(¢n (D) f(z)) converges uniformly on compact sets ¢ (D) f(z).

By Hurwitz's theorem the simple zeros éfy (D) f(z) are limit points of the zeros of

Y (D) (dn (D) f(z)). Thus, there exists ad > N such thaty (D) (¢n (D) f(z)) has
only simple zeros in the intervéal- A, A). Then by Lemma 5,

On.m (D) Y (D) (dn (D) f(2))] = (D) f(2)
has only simple zeros in the interval A, A). SinceA is arbitrary this proves the lemma.
O

Lemma 11. Let ¢ and f be in £P. Write ¢(z) = e *“¢1(z) and f(z) = e~ f1(2),
where¢; and f1 have genu$ or 1 anda, 8 > 0. If o < 1/4 and ¢ has infinitely many
zeros, thep (D) f (z) has only simple real zeros.

Proof. Since¢ has infinitely many zeros, there is a subsequdng of zeros ofp such
that} 72 |k |1 < co. Write ¢ as

¢ (2) = ¢o(2)¢2(2),

where ¢o(z) = [re1(1 — z/ax). Note thatgg has genus 0 ang, has genus< 2. By
Lemma 2,¢2(D) f (z) isin LP. Then by Lemma 10,
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¢ (D) f(2) = ¢o(D)[¢2(D) f (2)]
is in £LP and has only simple zeros.C

This completes the proof of Theorem 1.
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