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FOURIER TRANSFORMS HAVING ONLY REAL ZEROS

DAVID A. CARDON

(Communicated by Joseph A. Ball)

ABSTRACT. Let G(z) be a real entire function of order less than 2 with only
real zeros. Then we class?efy certain distribution functions F' such that the
Fourier transform H(z) = °°_ G(it)e'?* dF(t) has only real zeros.

—o0

1. INTRODUCTION

Pélya [13] suggested that determining the class of functions whose Fourier trans-
forms have only real zeros would be a ‘rather artificial question’ if it were not for
the Riemann Hypothesis. For R(s) > 1, the Riemann zeta function is defined by
((s) =>.7,n~ 5. It has an analytic continuation, and the function

£(s) = %s(s — D)2 (s/2)¢(s)

is entire. The Riemann Hypothesis states that all the zeros of £(s) satisfy R(s) =
1/2. A proof of the Riemann Hypothesis would be a major advance for analytic
number theory. Let Z(z) = & (% +iz). It is well known (see Titchmarsh [18],
chapter 10) that

[1]

(z2) = /OO ®(z)e* dx

— 00

where

o0
®(x) = Z (4n47r269m/2 - 6n27re5$/2) exp (—n27r62m) .

n=1
In other words, the Riemann Hypothesis is true if and only if the Fourier transform
E(z) has only real zeros.

Pélya wrote several papers (such as [11, 12, 13, 14], which can all be found in

[15]) in which he studied the reality of the zeros of various Fourier transforms. A
particularly interesting result is the following:

Proposition 1 (Pdlya [14]). Let f be an integrable function of a real variable t
such that f(t) = f(—t) and f(t) = O(ei|t|b) fort — xoo and b > 2. Assume that

[ O:o f(t)e=tat
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has only real zeros. Let ¢ be a real entire function having only real zeros, and
assume that ¢ has a Weierstrass product of the form

2) = ez~ 822 (1 _ Z) ez/oz;C
6(2) = 1;[ -

where ¢, a, ay, are real, 3 >0, and m is a nonnegative integer. (In other words, ¢
belongs to the Laguerre-Pdlya class.) Then

/ o(it) f(t)et dt

In this paper we are concerned with constructing Fourier transforms with only
real zeros in which the measure is not assumed to be the ordinary Lebesgue measure
dt. The main result is the following theorem:

has only real zeros.

Theorem 1. Suppose G is an entire function of order < 2 that is real on the real
azis and has only real zeros. Let {ar} be a nonincreasing sequence of positive real
numbers, let {Xy} be the sequence of independent random variables such that Xy
takes values £1 with equal probability, and let F,, be the distribution function of
the normalized sum Y, = (a1 X1 + - + anX,)/sn where s2 = a2 +---+a2. The
functions F,, converge pointwise to a continuous distribution F = lim, . F,. Let
H be the Fourier transform of G(it) with respect to the measure dF. That is,

/ G(it)e' dF (t).

Then H is an entire function of order < 2 that is real on the real axis. If H is not
identically zero, then H has only real zeros.

Theorem 1 includes cases not covered in Proposition 1 because the distribution
function F(t), although continuous, need not be differentiable. If F'(¢) is differen-
tiable, we may write

/ G(it)e™™ dF (t) / G(it)e™ F' () dt

However, since not all functions f(t) in Proposition 1 are of the form f(t) = F'(t) for
the types of distributions in Theorem 1, Proposition 1 covers cases not included in
Theorem 1. So, while there is some overlap between Proposition 1 and Theorem 1,
neither implies the other.

The proof of Theorem 1 is given in §2. Before proceeding with the proof we
mention that the proof relies on a result about sums of exponential functions. Let
h,(z) be the function of a complex variable z defined by

Z) = Z G(:I:ial + ...+ ian)eiz(ibli”'ibn)

where the summation is over all 2" possible sign combinations, the same sign com-
bination being used in both the argument of G and in the exponent. The numbers
ai,as,as, ... and by, bo, b3, ... are positive, and GG is as in Theorem 1. The author
shows in [3] that all the zeros of the exponential sum h,,(z) are real. Interestingly,
the proof of this fact is similar to the proof of the Lee-Yang Circle Theorem from
statistical mechanics (cf. [8] Appendix II or [17] Chapter 5). It should be pointed
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out that this result of the author is related to de Branges’ Hilbert spaces of entire

functions [5]. Let ap = by, s2 = a? + -+ + a2, and

Hy(2) =277 G((diay £ - £iay)/s,)e*Fottan)/om,

All of the zeros of H, (%) are real. Theorem 1 is established by showing that the
limit
H(z) = lim H,(z)

is uniform on compact sets.

2. PROOF OF THEOREM 1

The proof of Theorem 1 is presented in this section as a sequence of lemmas. We
begin with some notation.

The Laguerre-Pdélya class LP of functions consists of the entire functions having
only real zeros with a Weierstrass factorization of the form

azle®: =P H(l — 2/ e On

where a, «, § are real, § > 0, ¢ is a nonnegative integer, and the «,, are nonzero real
numbers such that Y a;,2 < co. We shall be most interested in the subset LP* of
the Laguerre-Polya class consisting of all elements of LP of order < 2. Thus, 3 is
necessarily 0 for functions in LP*.

The distribution function 7' for a random variable Y is T'(z) = Pr(Y < z).
We will consider the following types of random variables and their distribution
functions: Let {ax} be a nonincreasing sequence of positive real numbers. Let
{X}} be a sequence of independent random variables such that X}, takes values +1
with equal probability. Let Y,, be the sum

Cll)(l +--+ aan
Sn
where s2 = a?+---+a2. F, will denote the distribution function of Y,,, and F will
denote the limit F' = lim,, o, F},,. In Theorem 1 the distribution F' has variance 1.
However, F' could be rescaled to have any other positive value for its variance. The
following lemma describes this F'.

Y, =

Lemma 1. The sequence F,, converges pointwise to a continuous distribution F.
If the sequence s, is unbounded, F is the normal distribution. If the sequence s, is
bounded, F' is not the normal distribution.

Proof. This is proved in Lemma 1 of [2]. O

Lemma 2 (Pdlya [12], Hilfssatz II). Let a be a positive constant, let b be real, and
let G(z) be an entire function of genus 0 or 1 that for real z takes real values, has
at least one real zero, and has only real zeros. Then the function

e®G(z +ia) + e G(z —ia)
has only real zeros.

Proof. Pdlya’s original statement is Hilfssatz IT in [12]. Pélya’s argument is reiter-
ated as Proposition 2 in [4]. O

We need the following important fact about H,,(z).
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Lemma 3. Suppose G € LP*. Let ai,...,ay,b1,...,b, be positive real numbers.
The exponential sum

hn(Z) = Z G(ilal + ...+ Z‘an)eiz(ibli...ibn)

obtained by summing over all sign combinations, the same combination being used
in the argument of G as in the exponent, is in LP*.

Proof. 1t is clear that h,(z) is real for real z and has order 1. The fact that h,(z)
has real zeros is proved in [3] by a method similar to that of the Lee-Yang Circle
Theorem (found in Appendix II in [8]). O

If s2 = a +---+a2 and if we use the notation of Riemann-Steiltjes integration,
an immediate corollary to Lemma 3 is the following:

Corollary 4. The function
o0

Hy(2) =277 G((iay £ - £iay)/s,)e*Fostom)/om - / G(it)e' dF,(t)
—o0

is in LP*.

In Lemmas 6 and 7 we will show that the integrals [~ G(it)e dF,(t) converge

uniformly to [*_G(it)e' dF,(t) for z in compact sets. The proof of Lemma 6 will
require the following 1994 result of Pinelis, which is an improvement of a conjecture
by Eaton [6]:

Lemma 5 (Pinelis [10], Corollary 2.6). Let X, be independent random variables
taking values +1 with equal probability. Let s2 = a3 +---+ a2, and let
CL1X1 + o+ aan

Y, = .
Sn

Then
Pr(|Ya] > u) < 2¢(1 — ®(u))

where ¢ = 2€3/9, ®(u) = [“__ ¢(t)dt, and (t) = (2m)~ /212,

Lemma 6. Let € > 0 be given, suppose G € LP*, and let K be a compact subset
of C. Then there is a positive number A (depending on € and K) such that

/ |G(it)e*! | dF, (t) < e
[t]>A

for allm and all z € K.

Proof. Let A denote the order of G. By hypothesis, A < 2. Choose § with
max(1,\) < § < 2. Then choose A > 0 large enough so that |G(it)e’*| < el*l’
for all z € K and [t| > A. Such an A exists as follows: Choose ¢’ with A\ < ¢’ < 4.

Then for sufficiently large A, |G(it)| < el” whenever [t| > A. Since K is compact,
there is an R so that |z| < R for all z € K. For sufficiently large A and [t| > A,

(Git)e| < |G(it) eI < lfI” Rl < oltl”,

Thus, A exists as claimed. Then
B
/ (Git)e ™ | dF, (t) < 2 / e A (b).
A<|t|<B A
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After integration by parts the right hand-side becomes
B

28’ (F,(B) — 1) — 2¢*” (F,,(A) — 1) — 2 / (F(t) — 1)d(e"")
A
) B )
<24 (1= F(A) + 2/ (1 — E, ()6t te" dt.
A
According to Lemma 5 for ¢ > A and if A is sufficiently large, then

2
e—t2/2

o0 2
1—Fu(t) < ﬂ/ e 2du <
t
where 3 = 4e®/(9v/2m). This gives

|G (it)e™ |dF, (t) < e’ =A%/2 4 / T o2y
A<|t|<B 4
and -
/ G(it)e = |dF, (t) < A" =47/ 4 / 59 Let’ =1 /24y
A<L|t] A

For sufficiently large A the last integral is bounded above by A’ =A%/2, So,

/ G(it)e* [dF, (t) < 2eA"~47/2,
A<|t|<B

The right-hand side of the last inequality can be made arbitrarily small for suffi-
ciently large A. Therefore, we obtain f|t|>A |G (it)et*!|dF,(t) < € as desired. O

Lemma 7. Let K be a compact subset of C. Then

A A
/ Glit)ei™ dF, (1) — / Glit)ei™ dF (1)
—A —A
uniformly as n — oo for z € K.

Proof. By the Helly-Bray Theorem (see [9, p. 182] or [7, p. 298]) it is immediate
that convergence occurs pointwise. We must, however, verify uniform convergence
for z € K.
Let € > 0 be given, and write g.(t) = G(it)e?*!. Choose k such that x > |g,(t)|
and k > |g,(¢)] for all z € K and t € [—A, A]. Integration by parts yields
A

| cliveir® 0. (0FA) .- AF-A) - [ PO

Then

A A
/ G(it)e™™ dF(t) — / G(it)e™ dF, (1)
—A —A

< g=(A[F(A) = Fu(A)] + [g=(=A) [F(=A) = Fu(=A)]

A
+ / F() - R0l (o)

< KIF(A) = Fo(A)] + H|F(-4) = Fo(=A) + 524 max |F(t) - F(t)].
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Since the functions F;, and F' are distributions functions such that F;, converges
to the continuous distribution F' pointwise on [—A, A], F,, converges to F' uniformly
on [—A, A]. Thus for sufficiently large n and all ¢t € [—A, A],

€ €
Fo(t) — F(t)| < mi (——)
Fat) = FO] < min (0 o
Therefore, for all sufficiently large n and all z € K,

A A
‘ / G(it)eit* dF (1) — / G(it)eit* dF, (1)
—A —A

<ttite=e
3 3 3 7

This shows that the convergence ff‘A G(it)e'* dF,(t) — ffA G(it)e"* dF(t) is uni-
form as claimed. U
Lemma 8. Suppose G € LP*. Then H(z) = [~ G(it)e'* dF(t) is an entire
function that is real for real z, and if it does not vanish identically, then it has only
real zeros.

Proof. Let Hy(z) = [7_G(it)e*" dF,(t). By Lemmas 6 and 7, H,(z) converges
uniformly to H(z) on compact sets. Since H,(z) is real for real z, its limit H(z)
is real for real z. By Hurwitz’s Theorem (see [1, Thm. 2, p. 178)]), if H(z) is not
identically zero, its zeros are limit points of the zeros of the H,(z). Since, for each
n, H,(z) has only real zeros, H(z) also has only real zeros. O
Lemma 9. Suppose G € LP*. The order of H(z) = [*_G(it)e™*' dF(t) is < 2.

Proof. Choose § with A < § < 2 where A is the order of G. Let M be large enough
so that |G(2)| < Mel*’ for all 2. By applying Holder’s Inequality (see [16, p. 63])
we obtain

’/ G(Zt)e—zztdF(t)‘ S/ Me‘t‘f;—!—‘Z‘lt‘dF(t)

<M (/Z e2”dF(t)>1/2 (/O:o ezZ“dF(t))l/z.

By Lemma 5 both integrals in the product converge. The first integral is indepen-
dent of z. We will determine a bound for the second integral. Integration by parts
and an application of Lemma 5 give

/ 62|Z”t|dF(t):2/ e Itap (1)

0

=2¢%71 (F(t) — 1) ‘:O +2 /Oo 2|z]e?#! (1 — F(t)) dt

0
:1+4|z\/ 1221 (1 F () dt
0

oo
2 3
<1 +K|z|/ /24t where K = 10
0 9IVv2m

Since

o0 o0
/ 2lel—t2/2 4 < eQ\z\z/ ~(t=2120% 2y _ \fom 21l
0

we see that ‘ffooo G(it)e_ithF(t)’ is bounded by a constant times |z|e2/*I". Thus,
the order of [%_ G(it)e "*'dF(t) is < 2.
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This completes the proof of Theorem 1. O
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