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FOURIER TRANSFORMS HAVING ONLY REAL ZEROS

DAVID A. CARDON

(Communicated by Joseph A. Ball)

Abstract. Let G(z) be a real entire function of order less than 2 with only
real zeros. Then we classify certain distribution functions F such that the
Fourier transform H(z) =

∫ ∞
−∞ G(it)eizt dF (t) has only real zeros.

1. Introduction

Pólya [13] suggested that determining the class of functions whose Fourier trans-
forms have only real zeros would be a ‘rather artificial question’ if it were not for
the Riemann Hypothesis. For �(s) > 1, the Riemann zeta function is defined by
ζ(s) =

∑∞
n=1 n−s. It has an analytic continuation, and the function

ξ(s) =
1
2
s(s − 1)π−s/2Γ(s/2)ζ(s)

is entire. The Riemann Hypothesis states that all the zeros of ξ(s) satisfy �(s) =
1/2. A proof of the Riemann Hypothesis would be a major advance for analytic
number theory. Let Ξ(z) = ξ

(
1
2 + iz

)
. It is well known (see Titchmarsh [18],

chapter 10) that

Ξ(z) =
∫ ∞

−∞
Φ(x)eizxdx

where

Φ(x) =
∞∑

n=1

(
4n4π2e9x/2 − 6n2πe5x/2

)
exp

(−n2πe2x
)
.

In other words, the Riemann Hypothesis is true if and only if the Fourier transform
Ξ(z) has only real zeros.

Pólya wrote several papers (such as [11, 12, 13, 14], which can all be found in
[15]) in which he studied the reality of the zeros of various Fourier transforms. A
particularly interesting result is the following:

Proposition 1 (Pólya [14]). Let f be an integrable function of a real variable t

such that f(t) = f(−t) and f(t) = O(e−|t|b) for t → ±∞ and b > 2. Assume that∫ ∞

−∞
f(t)eiztdt
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c©2004 American Mathematical Society
Reverts to public domain 28 years from publication

1349



1350 DAVID A. CARDON

has only real zeros. Let φ be a real entire function having only real zeros, and
assume that φ has a Weierstrass product of the form

φ(z) = czmeαz−βz2 ∏
k

(
1 − z

αk

)
ez/αk

where c, α, αk are real, β ≥ 0, and m is a nonnegative integer. (In other words, φ
belongs to the Laguerre-Pólya class.) Then∫ ∞

−∞
φ(it)f(t)eizt dt

has only real zeros.

In this paper we are concerned with constructing Fourier transforms with only
real zeros in which the measure is not assumed to be the ordinary Lebesgue measure
dt. The main result is the following theorem:

Theorem 1. Suppose G is an entire function of order < 2 that is real on the real
axis and has only real zeros. Let {ak} be a nonincreasing sequence of positive real
numbers, let {Xk} be the sequence of independent random variables such that Xk

takes values ±1 with equal probability, and let Fn be the distribution function of
the normalized sum Yn = (a1X1 + · · · + anXn)/sn where s2

n = a2
1 + · · · + a2

n. The
functions Fn converge pointwise to a continuous distribution F = limn→∞ Fn. Let
H be the Fourier transform of G(it) with respect to the measure dF . That is,

H(z) =
∫ ∞

−∞
G(it)eizt dF (t).

Then H is an entire function of order ≤ 2 that is real on the real axis. If H is not
identically zero, then H has only real zeros.

Theorem 1 includes cases not covered in Proposition 1 because the distribution
function F (t), although continuous, need not be differentiable. If F (t) is differen-
tiable, we may write∫ ∞

−∞
G(it)eizt dF (t) =

∫ ∞

−∞
G(it)eiztF ′(t) dt.

However, since not all functions f(t) in Proposition 1 are of the form f(t) = F ′(t) for
the types of distributions in Theorem 1, Proposition 1 covers cases not included in
Theorem 1. So, while there is some overlap between Proposition 1 and Theorem 1,
neither implies the other.

The proof of Theorem 1 is given in §2. Before proceeding with the proof we
mention that the proof relies on a result about sums of exponential functions. Let
hn(z) be the function of a complex variable z defined by

hn(z) =
∑

G(±ia1 ± · · · ± ian)eiz(±b1±···±bn)

where the summation is over all 2n possible sign combinations, the same sign com-
bination being used in both the argument of G and in the exponent. The numbers
a1, a2, a3, . . . and b1, b2, b3, . . . are positive, and G is as in Theorem 1. The author
shows in [3] that all the zeros of the exponential sum hn(z) are real. Interestingly,
the proof of this fact is similar to the proof of the Lee-Yang Circle Theorem from
statistical mechanics (cf. [8] Appendix II or [17] Chapter 5). It should be pointed
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out that this result of the author is related to de Branges’ Hilbert spaces of entire
functions [5]. Let ak = bk, s2

n = a2
1 + · · · + a2

n, and

Hn(z) = 2−n
∑

G
(
(±ia1 ± · · · ± ian)/sn

)
eiz(±a1±···±an)/sn .

All of the zeros of Hn(z) are real. Theorem 1 is established by showing that the
limit

H(z) = lim
n→∞ Hn(z)

is uniform on compact sets.

2. Proof of Theorem 1

The proof of Theorem 1 is presented in this section as a sequence of lemmas. We
begin with some notation.

The Laguerre-Pólya class LP of functions consists of the entire functions having
only real zeros with a Weierstrass factorization of the form

azqeαz−βz2 ∏
(1 − z/αn)ez/αn

where a, α, β are real, β ≥ 0, q is a nonnegative integer, and the αn are nonzero real
numbers such that

∑
α−2

n < ∞. We shall be most interested in the subset LP∗ of
the Laguerre-Pólya class consisting of all elements of LP of order < 2. Thus, β is
necessarily 0 for functions in LP∗.

The distribution function T for a random variable Y is T (x) = Pr(Y ≤ x).
We will consider the following types of random variables and their distribution
functions: Let {ak} be a nonincreasing sequence of positive real numbers. Let
{Xk} be a sequence of independent random variables such that Xk takes values ±1
with equal probability. Let Yn be the sum

Yn =
a1X1 + · · · + anXn

sn

where s2
n = a2

1 + · · ·+a2
n. Fn will denote the distribution function of Yn, and F will

denote the limit F = limn→∞ Fn. In Theorem 1 the distribution F has variance 1.
However, F could be rescaled to have any other positive value for its variance. The
following lemma describes this F .

Lemma 1. The sequence Fn converges pointwise to a continuous distribution F .
If the sequence sn is unbounded, F is the normal distribution. If the sequence sn is
bounded, F is not the normal distribution.

Proof. This is proved in Lemma 1 of [2]. �

Lemma 2 (Pólya [12], Hilfssatz II). Let a be a positive constant, let b be real, and
let G(z) be an entire function of genus 0 or 1 that for real z takes real values, has
at least one real zero, and has only real zeros. Then the function

eibG(z + ia) + e−ibG(z − ia)

has only real zeros.

Proof. Pólya’s original statement is Hilfssatz II in [12]. Pólya’s argument is reiter-
ated as Proposition 2 in [4]. �
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We need the following important fact about Hn(z).

Lemma 3. Suppose G ∈ LP∗. Let a1, . . . , an, b1, . . . , bn be positive real numbers.
The exponential sum

hn(z) =
∑

G(±ia1 ± · · · ± ian)eiz(±b1±···±bn)

obtained by summing over all sign combinations, the same combination being used
in the argument of G as in the exponent, is in LP∗.

Proof. It is clear that hn(z) is real for real z and has order 1. The fact that hn(z)
has real zeros is proved in [3] by a method similar to that of the Lee-Yang Circle
Theorem (found in Appendix II in [8]). �

If s2
n = a2

1 + · · ·+ a2
n and if we use the notation of Riemann-Steiltjes integration,

an immediate corollary to Lemma 3 is the following:

Corollary 4. The function

Hn(z) = 2−n
∑

G
(
(±ia1 ± · · · ± ian)/sn

)
eiz(±a1±···±an)/sn =

∫ ∞

−∞
G(it)eit dFn(t)

is in LP∗.

In Lemmas 6 and 7 we will show that the integrals
∫ ∞
−∞ G(it)eit dFn(t) converge

uniformly to
∫ ∞
−∞ G(it)eit dFn(t) for z in compact sets. The proof of Lemma 6 will

require the following 1994 result of Pinelis, which is an improvement of a conjecture
by Eaton [6]:

Lemma 5 (Pinelis [10], Corollary 2.6). Let Xk be independent random variables
taking values ±1 with equal probability. Let s2

n = a2
1 + · · · + a2

n, and let

Yn =
a1X1 + · · · + anXn

sn
.

Then
Pr(|Yn| > u) < 2c(1 − Φ(u))

where c = 2e3/9, Φ(u) =
∫ u

−∞ φ(t) dt, and φ(t) = (2π)−1/2e−t2/2.

Lemma 6. Let ε > 0 be given, suppose G ∈ LP∗, and let K be a compact subset
of C. Then there is a positive number A (depending on ε and K) such that∫

|t|>A

|G(it)eizt| dFn(t) < ε

for all n and all z ∈ K.

Proof. Let λ denote the order of G. By hypothesis, λ < 2. Choose δ with max(1, λ)
< δ < 2. Then choose A > 0 large enough so that |G(it)eizt| < e|t|

δ

for all z ∈ K
and |t| > A. Such an A exists as follows: Choose δ′ with λ < δ′ < δ. Then for
sufficiently large A, |G(it)| < e|t|

δ′
whenever |t| > A. Since K is compact, there is

an R so that |z| < R for all z ∈ K. For sufficiently large A and |t| > A,

|G(it)eizt| ≤ |G(it)|e|z||t| < e|t|
δ′+R|t| < e|t|

δ

.
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Thus, A exists as claimed. Then
∫

A<|t|<B

|G(it)eizt|dFn(t) < 2
∫ B

A

etδ

dFn(t).

After integration by parts the right-hand side becomes

2eBδ

(Fn(B) − 1) − 2eAδ

(Fn(A) − 1) − 2
∫ B

A

(Fn(t) − 1)d(etδ

)

< 2eAδ

(1 − Fn(A)) + 2
∫ B

A

(1 − Fn(t))δtδ−1etδ

dt.

According to Lemma 5 for t ≥ A and if A is sufficiently large, then

1 − Fn(t) ≤ β

∫ ∞

t

e−u2/2du <
e−t2/2

2

where β = 4e3/(9
√

2π). This gives
∫

A<|t|<B

|G(it)eizt|dFn(t) < eAδ−A2/2 +
∫ B

A

δtδ−1etδ−t2/2dt

and ∫
A<|t|

|G(it)eizt|dFn(t) < eAδ−A2/2 +
∫ ∞

A

δtδ−1etδ−t2/2dt.

For sufficiently large A the last integral is bounded above by eAδ−A2/2. So,∫
A<|t|<B

|G(it)eizt|dFn(t) < 2eAδ−A2/2.

The right-hand side of the last inequality can be made arbitrarily small for suffi-
ciently large A. Therefore, we obtain

∫
|t|>A |G(it)eizt|dFn(t) < ε as desired. �

Lemma 7. Let K be a compact subset of C. Then
∫ A

−A

G(it)eizt dFn(t) →
∫ A

−A

G(it)eizt dF (t)

uniformly as n → ∞ for z ∈ K.

Proof. By the Helly-Bray Theorem (see [9, p. 182] or [7, p. 298]) it is immediate
that convergence occurs pointwise. We must, however, verify uniform convergence
for z ∈ K.

Let ε > 0 be given, and write gz(t) = G(it)eizt. Choose κ such that κ > |gz(t)|
and κ > |g′z(t)| for all z ∈ K and t ∈ [−A, A]. Integration by parts yields

∫ A

−A

G(it)eitz dF (t) = gz(A)F (A) − gz(−A)F (−A) −
∫ A

−A

F (t)g′z(t) dt.
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Then∣∣∣∣∣
∫ A

−A

G(it)eitz dF (t) −
∫ A

−A

G(it)eitz dFn(t)

∣∣∣∣∣
≤ |gz(A)| |F (A) − Fn(A)| + |gz(−A)| |F (−A) − Fn(−A)|

+
∫ A

−A

|F (t) − Fn(t)| |g′z(t)| dt

≤ κ|F (A) − Fn(A)| + κ|F (−A) − Fn(−A)| + κ2A max
t∈[−A,A]

|F (t) − Fn(t)|.

Since the functions Fn and F are distributions functions such that Fn converges
to the continuous distribution F pointwise on [−A, A], Fn converges to F uniformly
on [−A, A]. Thus for sufficiently large n and all t ∈ [−A, A],

|Fn(t) − F (t)| < min
( ε

6Aκ
,

ε

3κ

)
.

Therefore, for all sufficiently large n and all z ∈ K,
∣∣∣∣∣
∫ A

−A

G(it)eitz dF (t) −
∫ A

−A

G(it)eitz dFn(t)

∣∣∣∣∣ <
ε

3
+

ε

3
+

ε

3
= ε.

This shows that the convergence
∫ A

−A
G(it)eitz dFn(t) → ∫ A

−A
G(it)eitz dF (t) is uni-

form as claimed. �

Lemma 8. Suppose G ∈ LP∗. Then H(z) =
∫ ∞
−∞ G(it)eizt dF (t) is an entire

function that is real for real z, and if it does not vanish identically, then it has only
real zeros.

Proof. Let Hn(z) =
∫ ∞
−∞ G(it)eizt dFn(t). By Lemmas 6 and 7, Hn(z) converges

uniformly to H(z) on compact sets. Since Hn(z) is real for real z, its limit H(z)
is real for real z. By Hurwitz’s Theorem (see [1, Thm. 2, p. 178]), if H(z) is not
identically zero, its zeros are limit points of the zeros of the Hn(z). Since, for each
n, Hn(z) has only real zeros, H(z) also has only real zeros. �

Lemma 9. Suppose G ∈ LP∗. The order of H(z) =
∫ ∞
−∞ G(it)eizt dF (t) is ≤ 2.

Proof. Choose δ with λ < δ < 2 where λ is the order of G. Let M be large enough
so that |G(z)| < Me|z|

δ

for all z. By applying Hölder’s Inequality (see [16, p. 63])
we obtain∣∣∣∣

∫ ∞

−∞
G(it)e−iztdF (t)

∣∣∣∣ ≤
∫ ∞

−∞
Me|t|

δ+|z||t|dF (t)

≤ M

(∫ ∞

−∞
e2|t|δdF (t)

)1/2 (∫ ∞

−∞
e2|z||t|dF (t)

)1/2

.

By Lemma 5 both integrals in the product converge. The first integral is indepen-
dent of z. We will determine a bound for the second integral. Integration by parts
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and an application of Lemma 5 give∫ ∞

−∞
e2|z||t|dF (t) = 2

∫ ∞

0

e2|z|tdF (t)

= 2e2|z|t(F (t) − 1
)∣∣∣∞

0
+ 2

∫ ∞

0

2|z|e2|z|t(1 − F (t)
)
dt

= 1 + 4|z|
∫ ∞

0

|z|e2|z|t(1 − F (t)
)
dt

≤ 1 + K|z|
∫ ∞

0

e2|z|t−t2/2dt where K = 16e3

9
√

2π
.

Since ∫ ∞

0

e2|z|t−t2/2dt ≤ e2|z|2
∫ ∞

−∞
e−(t−2|z|)2/2dt =

√
2π e2|z|2 ,

we see that
∣∣∣∫ ∞

−∞ G(it)e−iztdF (t)
∣∣∣ is bounded by a constant times |z|e2|z|2 . Thus,

the order of
∫ ∞
−∞ G(it)e−iztdF (t) is ≤ 2.

This completes the proof of Theorem 1. �
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