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Abstract. We construct a measure such that if {pn(z)} is the sequence of
orthogonal polynomials relative to that measure, then the Riemann Hypothesis

with simple zeros is true if and only if limn→∞

p2n(z)
p2n(0)

=
ξ(1/2+iz)

ξ(1/2)
where

ξ(s) = 1
2
s(s − 1)π−s/2Γ(s/2)ζ(s) is the Riemann ξ-function.

1. Introduction

Let ζ(s) =
∑∞

n=1 n
−s be the Riemann zeta function. Riemann showed that ζ(s)

has an analytic continuation to all s with the exception of a simple pole at s = 1.
The Riemann ξ-function, defined as ξ(s) = 1

2s(s − 1)π−s/2Γ(s/2)ζ(s), is an entire
function satisfying ξ(s) = ξ(1− s). The Riemann Hypothesis is the conjecture that
all of the zeros of ξ(s) lie on the ‘critical line’ which is the line with real part 1/2.
The Prime Number Theorem, proved independently by Hadamard and de la Vallée
Poussin in 1896, is equivalent to the fact that all zeros of ξ(s) lie in the critical
strip 0 < Re(s) < 1. Let M(T ) denote the number of zeros in the critical strip with
0 < Im(s) ≤ T that lie on the critical line. Hardy [6] proved that M(T ) tends to
infinity as T tends to infinity. Hardy and Littlewood [7] showed that M(T ) > AT
for some positive constant A. Selberg [12] proved that M(T ) > AT log T for some
positive constant A. Since the number N(T ) of zeros in the critical strip up to
height T is known to be asymptotic to T

2π log( T
2π ), Selberg showed that a positive

proportion of the zeros are on the critical line. Extensive numerical calculations,
such as [2, 3, 8, 9, 10, 11], have supported the Riemann Hypothesis. The numerical
calculations have supported the stronger conjecture that, in addition to lying on the
critical line, the zeros of ξ(s) are simple. In this paper we show that the Riemann
Hypothesis with simple zeros is equivalent to the existence of a certain family of

orthogonal polynomials {pn(z)} such that limn→∞
p2n(z)
p2n(0) = ξ(1/2+iz)

ξ(1/2) .

We will now describe the main result of this paper. We will define a step function
F related to the zeros of ξ(s). Let Ξ(z) = ξ(1/2 + iz). Then the zeros of Ξ(z) lie
in the strip −1/2 < Im(z) < 1/2, Ξ(z) is real for real z, Ξ(z) = Ξ(−z), and any
non-real zeros of Ξ(z) occur in complex conjugate pairs. For z = x + iy in the
region x ≥ 0, −1/2 ≤ y ≤ 1/2, let f(z) be analytic and satisfy:

f(z) is real for real z,(1)

Re
(
f(z)

)
> 0,(2)

|f(x+ iy)| < e−cx(3)
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where c is a positive constant. For T ≥ 0 let

(4) F (T ) =
1

2πi

∫

γT

Ξ′(z)

Ξ(z)
f(z) dz

where γT is the positively oriented boundary of the region 0 ≤ x ≤ T , −1/2 ≤ y ≤
1/2. Label the zeros of Ξ(z) in the region x > 0, 0 ≤ y < 1/2 as αk + iβk where
αk ≤ αk+1. If T is not equal to any αk, F (T ) may be represented as the finite sum

F (T ) =
∑

αk<T
βk=0

f(αk) +
∑

αk<T
βk>0

{
f(αk + iβk) + f(αk − iβk)

}
.

For T < 0 let F (T ) = −F (T ). If f(z) were replaced by 1, F (T ) would be the
number of zeros in the critical strip up to height T . However, we imposed the
restriction in inequality (3) to guarantee the existence of certain integrals.

For polynomials p(x) and q(x) with real coefficients we define an inner product
by the Riemann-Stieltjes integral

〈p(x), q(x)〉 =

∫ ∞

−∞

p(x)q(x)dF (x).

Applying the Gram-Schmidt orthogonalization process to the polynomials 1, x, x2, . . .
produces an orthogonal family of polynomials {pn(x)} where the degree of pn(x) is
n. In this case, p2n(x) is an even function while p2n+1(x) is an odd function.

Then we have:

Theorem 1. The Riemann hypothesis with simple zeros is true if and only if

lim
n→∞

p2n(z)

p2n(0)
=
ξ(1/2 + iz)

ξ(1/2)

for every z ∈ C.

We note that the proof shows that limn→∞
p2n(z)
p2n(0) = limn→∞

p2n+1(z)
z p′

2n+1
(0) . Thus the

theorem could be stated in terms of the odd degree polynomials p2n+1(z) as well.
The proof of Theorem 1 is presented in §3.

2. A few facts about orthogonal polynomials

In this section we will recall several facts from the general theory of orthogonal
polynomials that will be needed in the proof of Theorem 1. For the basic theory,
we refer the reader to the books by Szëgo [14] and Chihara [4]. Our review is based
on these two works but especially on [4].

A bounded non-decreasing function ψ is called a distribution function if its mo-
ments

(5) µn =

∫ ∞

−∞

xndψ(x)

exist for n = 0, 1, 2, . . .. Two distribution functions ψ1 and ψ2 are substantially

equal if and only if there is a constant K such that ψ1(x) = ψ2(x) + K at all
common points of continuity. The spectrum of ψ is the set

S(ψ) = {x |ψ(x+ δ) − ψ(x− δ) > 0 for all δ > 0}.
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If S(ψ) is infinite, then the expression

〈p(x), q(x)〉 =

∫ ∞

−∞

p(x)q(x)dψ(x)

defines an inner product on the space of polynomials with real coefficients. Using
this inner product we orthogonalize the set of non-negative powers of x to create
a family {pn(x)} of orthogonal polynomials with real coefficients using the Gram-
Schmidt procedure:

p0(x) = 1,

pn(x) = xn −

n−1∑

k=0

〈xn, pk〉

〈pk, pk〉
pk(x) for k ≥ 1.

Lemma 2.1. ([14, Thm. 3.3.1] or [4, Thm. I.5.2].) The zeros of pn(x) are real

and simple for each n ≥ 1.

We will label the zeros of pn(x) as yn1 < yn2 < · · · < ynn.

Lemma 2.2. ([14, Thm. 3.3.3] or [4, Thm. I.5.3].) The zeros of pn(x) and pn+1(x)
interlace. That is,

yn+1,i < yni < yn+1,i+1, i = 1, 2, . . . , n.

Furthermore, between any two zeros of pn(x) there is at least one zero of pm(x) for

m > n.

Using the moments from equation (5) we define a moment functional on the
space of polynomials by

L[p(x)] =

∫ ∞

−∞

p(x)dψ(x) =

n∑

k=0

ckµk

where p(x) = c0 + c1x+ · · · + cnx
n.

Lemma 2.3. ([14, Thm. 3.4.1] or [4, Thm. I.6.1].) There are numbers An1,

An2,. . . , Ann such that for every polynomial π(x) of degree at most 2n− 1

L[π(x)] =

n∑

k=1

Ankπ(ynk).

The numbers Ank are all positive and An1 + · · · +Ann = µ0.

The equation in Lemma 2.3 is called the Gauss quadrature formula. The numbers
Ank are sometimes called Christoffel numbers.

The zeros of the polynomials {pn(x)} are strongly related to the spectrum S(ψ).
Let

(6) ψn(x) =







0 if x < yn1,

An1 + · · · +Anp if ynp ≤ x < yn,p+1 where 1 ≤ p < n,

µ0 if x ≥ ynn.

Lemma 2.4. ([4, Thm. II.3.1].) There is a subsequence of {ψn} that converges on

(−∞,∞) to a distribution function η which has a infinite spectrum and such that

µn =
∫∞

−∞
xndψ(x) =

∫∞

−∞
xndη(x).
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It is not generally true that η is substantially equal to ψ. Distribution functions,
such as η, that are subsequential limits of {ψn} are called natural representatives

of the moment functional L.

Lemma 2.5. ([14, Thm. 3.41.2] or [4, Thm. II.4.1].) The open interval (yni, yn,i+1)
contains at least one spectral point of the function ψ.

Lemma 2.6. ([4, Thm. II.4.3].) Let η be a natural representative of L and let

s ∈ S(η). Then every neighborhood of s contains a zero of pn(x) for infinitely

many values of n.

Given a list of moments {µn}
∞
n=0, the Hamburger moment problem consists of

classifying the distribution functions φ such that

µn =

∫ ∞

−∞

xndφ(x), n = 0, 1, 2, . . .

If all solutions φ of the Hamburger moment problem are substantially equal, we say
the moment problem is determined.

Carleman gave a sufficient (but not necessary) condition for a moment problem
to be determined.

Lemma 2.7. ([13, Thm. 1.11] or [1, p. 85].) The moment problem µn =
∫∞

−∞
xndψ(x) is determined if

∞∑

n=1

µ
−1/2n
2n = ∞.

The most crucial part of the proof of Theorem 1 will involve showing that
the Hamburger moment problem for the distribution function F , defined in equa-
tion (4), is determined. We will now proceed with the proof.

3. Proof of Theorem 1

We begin by showing that the expression

(7) 〈p(x), q(x)〉 =

∫ ∞

−∞

p(x)q(x)dF (x)

defines an inner product on the space of polynomials with real coefficients.

Lemma 3.1. The nth moments

µn =

∫ ∞

−∞

xndF

exist, and equation (7) defines an inner product on the space of polynomials with

real coefficients.

Proof. Label the zeros of ξ(1/2 + iz) in the region {x+ iy |x > 0, 0 ≤ y < 1/2} as
αk + iβk where αk ≤ αk+1 for k ≥ 1. If αk + iβk is a root, so is αk − iβk. Also
recall from (3) that |f(x+ iy)| < exp(−cx) when x > 0 and −1/2 < y < 1/2. Then

∫ ∞

0

xndF =
∑

k
βk=0

αn
kf(αk) +

∑

k
βk 6=0

αn
k

(
f(αk + iβk) + f(αk − iβk)

)

≤

∞∑

k=1

αn
ke

−cαk + 2

∞∑

k=1

αn
ke

−cαk = 3

∞∑

k=1

αn
ke

−cαk .(8)
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We need to know the approximate size of αk. Recall that the number N(T ) of
zeros of ξ(z) in the critical strip up to height T is known [15, p. 214] to satisfy

N(T ) ∼
T

2π
log

(
T

2π

)

.

It follows that if the zeros in the critical strip with Im(z) > 0 are labelled as ρk +itk
with tk+1 ≥ tk, then

(9) tk ∼
2πk

log k
.

By equation (9) there exist positive constants A and B such that

(10) A
k

log k
< αk−1 < B

k

log k

for k ≥ 2. Combining inequalities (8) and (10) gives
∫ ∞

0

xndF ≤ 3Bn
∞∑

k=2

(
k

log k

)n

exp

(

−cA
k

log k

)

.

The sum clearly converges. This can be seen, for example, by using the limit com-
parison test from elementary calculus with the convergent series

∑
k−2. Because

F (T ) = −F (−T ), µn = 0 for odd n. When n is even

(11) µn =

∫ ∞

−∞

xndF = 2

∫ ∞

0

xndF ≤ 6Bn
∞∑

k=2

(
k

log k

)n

exp

(

−cA
k

log k

)

.

This shows that the moments µn =
∫∞

−∞
xndF exist for n ≥ 0. Thus the expres-

sion 〈p(x), q(x)〉, defined by equation (7), exists for any real polynomials p(x) and
q(x). The bilinearity is apparent. Because the measure dF has infinite support
〈p(x), p(x)〉 > 0 unless p(x) = 0. Therefore, the expression 〈p(x), q(x)〉 defines an
inner product on the space of polynomials with real coefficients. �

Lemma 3.2. The Hamburger moment problem for the moments of the distribution

function F ,

µn =

∫ ∞

−∞

xndF,

is determined.

Proof. By extending the proof of the previous lemma we will obtain a sufficiently
good upper bound on µn to apply Carleman’s criterion (Lemma 2.7). We begin by
estimating the summation in inequality (11). Let

S(n) =

∞∑

k=2

(
k

log k

)n

exp

(

−cA
k

log k

)

.

Split the sum into two parts:

S(n) =
∑

2≤k≤M+1

(
k

log k

)n

exp

(

−cA
k

log k

)

︸ ︷︷ ︸

S1(n)

+
∑

k>M+1

(
k

log k

)n

exp

(

−cA
k

log k

)

︸ ︷︷ ︸

S2(n)

.

We will determine bounds for S1(n) and S2(n). A careful choice of M will lead to
a bound on S2(n) that is much smaller than the bound on S1(n).
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By elementary calculus the function ( k
log k )n exp(−cA k

log k ) has a maximum of

( n
ecA )n when k

log k = n
cA . This gives a bound on S1(n):

(12) S1(n) ≤M
( n

ecA

)n

.

Now assume that M is sufficiently large such that the following three conditions
hold:

k

log k
>

n

cA
for k ≥M,(13)

(
k

log k

)(
log k − 1

log2 k

)

> 1 for k ≥M,(14)

M

logM
>

(
2(n+ 1)

cA

)2

.(15)

Condition (13) ensures that the function ( k
log k )n exp(−cA k

log k ) decreases for k ≥

M . The reasons for assuming conditions (14) and (15) will become apparent in the
following calculation:

S2(n) =
∑

k>M+1

(
k

log k

)n

exp

(

−cA
k

log k

)

<

∫ ∞

M

(
k

log k

)n

exp

(

−cA
k

log k

)

dk by (13),

<

∫ ∞

M

(
k

log k

)n+1

exp

(

−cA
k

log k

)(
ln k − 1

ln2 k

)

dk by (14),

=

∫ ∞

M/ log M

wn+1 exp(−cAw) dw.

For any positive α and w, w < exp(αw)
α . Setting α = cA

2(n+1) gives

S2(n) <

(
2(n+ 1)

cA

)n+1 ∫ ∞

M/ log M

exp

(

−
cAw

2

)

dw =
2

cA

(
2(n+1)

cA

exp( cA
2(n+1)

M
log M )

)n+1

.

By condition (15), 2(n+1)
cA < exp( cA

2(n+1)
M

log M ). Thus

(16) S2(n) <
2

cA
.

Combining inequalities (12) and (16) gives

S(n) = S1(n) + S2(n) < M
( n

ecA

)n

+
2

cA
.
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Let M = κn where κ > 1. As soon as n is sufficiently large conditions (13), (14),
and (15) hold. So, for sufficiently large even n,

µ1/n
n ≤

(
6BnS(n)

)1/n
<

(

6Bn

(( κn

ecA

)n

+
2

cA

))1/n

<
(

12Bn
( κn

ecA

)n)1/n

= 121/n

(
Bκ

ecA

)

n

<

(
2Bκ

ecA

)

n.

Consequently
∞∑

n=0

µ
−1/2n
2n = ∞,

and by Carleman’s criterion (Lemma 2.7) it follows that the Hamburger moment
problem µn =

∫∞

−∞
xndF (x) is determined. �

Let {pn(x)} be the family of orthogonal polynomials obtained from the inner
product in Lemma 3.1 by orthogonalizing the set of non-negative powers of x ac-
cording the the Gram-Schmidt procedure. Because µ2k+1 = 0 and µ2k > 0 for each
k it follows that p2n+1(x) is an odd function while p2n(x) is an even function.

The spectrum (defined in §2) of F consists of all αk such that αk + iβk is a zero
of ξ(1/2 + iz). We will label the positive values in S(F ) as

a1 < a2 < a3 < · · · .

It was known, as early as Riemann [5, p. 159], that a1 ≈ 14.134. Denote the n
positive zeros of p2n(x) as

x2n,1 < x2n,2 < · · · < x2n,n.

Similarly, denote the n positive zeros of p2n+1(x) as

x2n+1,1 < x2n+1,2 < · · · < x2n+1,n.

Thus, we may write

(17)
p2n(z)

p2n(0)
=

n∏

k=1

(

1 −
z2

x2
2n,k

)

and
p2n+1(z)

z p′2n+1(0)
=

n∏

k=1

(

1 −
z2

x2
2n+1,k

)

.

In Lemmas 3.3 and 3.4 we will show that ak = limn→∞ xnk.

Lemma 3.3. ak < xmk < xnk when m > n. Hence, ak ≤ limn→∞ xnk.

Proof. The spectral points of F are the numbers ±ak for k = 1, 2, 3, . . .. By
Lemma 2.5 if n is odd, the open interval (0, xn1) contains a1 because a1 is the
smallest positive spectral point. If n is even, the open interval (−xn1, xn1) contains
a1. In either case, a1 < xn1. Similarly, each of the open intervals (xn,k−1, xnk)
for 2 ≤ k ≤ ⌊n/2⌋ contains a spectral point. This forces ak < xnk. From the
interlacing property of zeros in Lemma 2.2 it is immediate that

(18) 0 < xn+1,1 < xn,1 < · · · < xn+1,n < xn,n < xn+1,n+1

whether n is even or odd. Hence, ak < xmk < xnk for when m > n. �

Lemma 3.4. ak = limn→∞ xnk.
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Proof. By Lemma 2.4 there is a subsequence of the functions Fn, defined in equa-
tion (6), that converges to a distribution function η such that

µn =

∫ ∞

−∞

xndη(x), n = 0, 1, 2, . . .

In Lemma 3.2 it was established that the Hamburger moment problem

µn =

∫ ∞

−∞

xndF (x), n = 0, 1, 2, . . .

is determined. Therefore, F and η are substantially equal and they have the same

spectrum. Let ak be any one of the positive spectral points of F or η. By Lemma 2.6
every neighborhood of ak contains a zero of pn(x) for infinitely many n. Let δ1 > 0
be small enough so that the only spectral point of F in (a1 − δ1, a1 + δ1) is a1. By
Lemma 3.3 the only root of pn(x) that potentially could be in that neighborhood
is xn1. Since infinitely many values of the bounded decreasing sequence {xn1} lie
in that neighborhood of a1, limn→∞ xn1 = a1. Suppose, by way of induction, that
limn→∞ xnr = ar for 1 ≤ r < k. Choose δk > 0 small enough so that the only
spectral point of F in (ak−δk, ak +δk) is ak. Again by Lemma 3.3 the roots xnj for
j > k cannot be in the neighborhood of ak since ak < ak+1 < xnj . By the induction
hypothesis only finitely many roots xnj with j < k can be in the neighborhood.
Since the neighborhood contains infinitely many roots the only possibility is that
xnk is in the neighborhood for infinitely many n. Thus limn→∞ xnk = ak. �

Lemma 3.5. The sequences of polynomials

p2n(z)

p2n(0)
and

p2n+1(z)

z p′2n+1(0)

converge uniformly on compact sets to the entire function with simple real zeros

corresponding to the real parts of zeros of ξ(1/2 + iz). Thus, for all z ∈ C,

lim
n→∞

p2n(z)

p2n(0)
= lim

n→∞

p2n+1(z)

z p′2n+1(0)
=

∞∏

k=1

(

1 −
z2

a2
k

)

.

Proof. Let ǫ > 0 be given. Let K be any compact subset of C. Choose R so that
|z| < R for every z ∈ K. Define MR to the be positive constant

MR =

∞∏

k=1

(

1 +
R2

a2
k

)

.

Because ξ(1/2+ iz) is an entire function of order one [15, Thm. 2.12],
∑∞

k=1 a
−2
k <

∞. Consequently, MR is finite. For z ∈ K,

∣
∣
∣
∣

p2n(z)

p2n(0)

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

n∏

k=1

(

1 −
z2

x2
2n,k

)∣
∣
∣
∣
∣
≤

n∏

k=1

(

1 +
|z|2

x2
2n,k

)

≤

n∏

k=1

(

1 +
R2

a2
k

)

≤MR.

Now choose N at least large enough so that ak > R when k > N . For n > N ,
define α(z) and β(z) by

1 + α(z) =
n∏

k=N+1

(

1 −
z2

x2
2n,k

)

and 1 + β(z) =
n∏

k=N+1

(

1 −
z2

a2
k

)

.
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Since 1 −R2/a2
k < |1 − z2/x2

2n,k| < 1 +R2/a2
k we obtain

∞∏

k=N+1

(
1 −R2/a2

k

)
< |1 + α(z)| <

∞∏

k=N+1

(
1 +R2/a2

k

)
.

Similarly,

∞∏

k=N+1

(
1 −R2/a2

k

)
< |1 + β(z)| <

∞∏

k=N+1

(
1 +R2/a2

k

)
.

Since limN→∞

∏∞
k=N+1

(
1 −R2/a2

k

)
= 1 and limN→∞

∏∞
k=N+1

(
1 −R2/a2

k

)
= 1

we may choose N large enough so that

|α(z)| <
ǫ

MR
and |β(z)| <

ǫ

MR
.

Choose N1 > N large enough so that, if n > N1 and z ∈ K,

∣
∣
∣
∣
∣

N∏

k=1

(

1 −
z2

x2
2n,k

)

−
N∏

k=1

(

1 −
z2

a2
k

)
∣
∣
∣
∣
∣
< ǫ.

Let n > N1. Then
∣
∣
∣
∣
∣

p2n(z)

p2n(0)
−

∞∏

k=1

(

1 −
z2

a2
k

)
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

n∏

k=1

(

1 −
z2

x2
2n,k

)

−
∞∏

k=1

(

1 −
z2

a2
k

)
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(
1 + α(z)

)
N∏

k=1

(

1 −
z2

x2
2n,k

)

−
(
1 + β(z)

)
N∏

k=1

(

1 −
z2

a2
k

)
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣

N∏

k=1

(

1 −
z2

x2
2n,k

)

−

N∏

k=1

(

1 −
z2

a2
k

)
∣
∣
∣
∣
∣

+ |α(z)|

∣
∣
∣
∣
∣

N∏

k=1

(

1 −
z2

x2
2n,k

)∣
∣
∣
∣
∣
+ |β(z)|

∣
∣
∣
∣
∣

N∏

k=1

(

1 −
z2

a2
k

)
∣
∣
∣
∣
∣

≤ ǫ+
ǫ

MR
·MR +

ǫ

MR
·MR = 3ǫ.

This shows that p2n(z)
p2n(0) converges to

∏∞
k=1(1−z

2/a2
k) uniformly on compact subsets

of C as n tends to infinity. The same argument, with 2n replaced by 2n+ 1, shows

that the sequence p2n+1(z)
z p′

2n+1
(0) converges uniformly on compact sets to the same entire

function. �

By Lemma 3.5

lim
n→∞

p2n(z)

p2n(0)
= lim

n→∞

p2n+1(z)

z p′2n+1(0)
=

∞∏

k=1

(

1 −
z2

a2
k

)

=
ξ(1/2 + iz)

ξ(1/2)

if and only if ξ(1/2 + iz) has simple real zeros. This completes the proof of Theo-
rem 1.
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