Denise
Halverson
Research Publications:
·
R.J. Daverman and D.M.
Halverson, The
cell-like approximation theorem in dimension n=5, Fundamenta
Mathematicae, 197 (2007) , 81-121.
MR2365884
·
D.M. Halverson, L.
Petersen, Projection decompositions of 0-dimensional sets,
JP J. Geom. Topol. 7
(2007), no.3, 327-339.
MR2371845.
·
D.M. Halverson, Detecting
codimension one manifold factors
with 0-stitched disks, Topology Appl.
154 (2007),
no. 9, 1993-1998. MR2319721
·
J. J. Cox, B.L. Adams,
D.T. Fullwood,
and D.M. Halverson, Heterogeneous design
optimization from the microstructure, Proceedings of IDETC/CIE
2006,
ASME 2006 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference, September 10-13,
2006,
Philadelphia, Pennsylvania, USA. DETC2006-99157.
·
D.M. Halverson and G.R.
Lawlor, Area-minimizing subsurfaces
of Scherk's singly periodic surface and
the catenoid, Calc. Var. Partial
Differential
Equations 25 (2006), no. 2, 257--273. MR2188749
·
R.J. Daverman and D.M
Halverson, Path
concordances as detectors of codimension
one manifold
factors, Proceedings of the Oberwolfach
Miniworkshop on Exotic Manifolds.
Geometry &
Topology Monographs 9 (2006) 7-15. MR2222487
·
D.M. Halverson, 2-ghastly
spaces with the disjoint homotopies
property: The
method of fractured maps, Topology Appl.
138
(2004), no. 1-3, 277--286. MR2035486 (2004k:57030)
·
M.J. Dorff, D.M.
Halverson and
G.R. Lawlor, Area minimizing minimal
graphs over non-convex domains, Pacific Journal of Mathematics,
210 (2003),
no. 2, 229--259. MR1988533 (2004e:49060)
·
D.M. Halverson, Detecting
codimension one manifold factors with the
disjoint homotopies property, Topology
Appl. 117 (2002), no. 3, 231--258.
MR1874088 (2002k:57055)
·
D.M. Halverson and D.G.
Wright, Linearly opaque homeomorphisms of Rn, Proceedings of the 2000
Topology and
Dynamics Conference (San
Antonio, TX). Topology
Proc. 25 (2000), Spring,
167--180. MR1875589 (2002m:57029)
Student Research Papers
Shortest Path
Between Two Points on the Regular Tetrahedron
The Steiner Problem on Narrow and Wide Cones
The Three Point Steiner Problem on the Flat
Torus: The Minimal Lune Case
Three-Point Steiner Problem on the
Flat Torus
Steiner Tree Constructions in Hyperbolic
Space
Undergraduate Research
Geometric
Optimization MEG Program
Women in Math, Science, and
Engineering
Courses:
Contact Information:
E-mail
Snail Mail
263 TMCB
Brigham
Young University
Provo,
UT 84602
Telephone
(801) 422-1207
FAX
(801) 422-0504