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Abstract. We show how to identify the minimal path network connecting

three fixed points on the flat torus under certain conditions. In particular, let

T be a torus covered by a rectangular fundamental domain of dimension l×w.
Let A, B, and C be points in T . Associated with A and B is a minimal lune

region, L(A,B), which will be described in our paper. If AB ≤
√

3
4

√
l2 + w2

and C is contained in L(A,B), then the minimal path network is the union of
the segments connecting A to C and C to B, which are contained in L(A,B).

1. Introduction

In this paper, we are going to solve the three-point Steiner problem for a special
case on the flat torus. The Steiner problem asks to find the minimal path network
connecting n specified points. Given three points in the plane, A, B, and C, if one of
the angles of the4ABC is greater than 120◦, then the minimal path network in the
plane is constructed by connecting the two edges that are adjacent to that angle.
If all of the angles of the triangle are less than 120◦, the minimal path network
contains an additional point, called a Steiner point. There are algorithms that can
solve any given n point Steiner problem in the plane. The first such algorithm is
Melzak’s algorithm.

The problem on the torus is significantly harder than the Euclidean problem. In
the Euclidean plane there is only one straight line that connects two points, but
on the torus there are infinitely many straight lines that connect two points. This
problem is important because many people have worked on it. It is also ground-
breaking work for similar problems, on other surfaces.

2. Preliminaries

We can relate the Steiner problem on the flat torus to the Steiner problem
on the Euclidean plane. The flat torus has a rectangular fundamental domain
in the Euclidean plane that acts as a covering space for the torus. By taking a
rectangular fundamental domain in the Euclidean plane and ”sewing” it’s parallel
edges together, we can represent the flat torus.

Then because on a torus we can create a path network over the ”seams”, to
represent the torus in the Euclidean plane, we need to tile the Euclidean plane with
fundamental domains. Let the dimensions of the fundamental domain be l×w. Let
a fundamental domain be denoted by Tm,n, where m denotes the horizontal position
and n denotes the vertical position of the fundamental domain. Let the original
fundamental domain the fundamental domain defined by the positive x and y axis
with the origin as a corner be denoted T0,0. Let the fundamental domain directly
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above will be T0,1, the fundamental domain directly to the right will be T1,0, and
the fundamental domain that is above T1,0 will be T1,1.

So, given three points on the torus, each fundamental domain, Tm,n, will have
three points to represent these points. Connecting points in different domains
represents the path network crossing over a ”seam”. If a point A is located at
(x, y), then the translates of A will be at (x + ml, y + nw) where l is the length
of the fundamental domain along the x-axis, w is the width along the y-axis, and
m and n are indicators as to which fundamental domain the translate is in. For
example, if the translate is in T1,0, then m = 1 and n = 0. Given points A, B, C
on the torus, we will refer to the translates of these points as A′, B′, and C ′.

2.1. The Three Point Steiner Problem in Euclidean Space. Given three
points A, B, and C in the Euclidean plane, if one of the angles of the 4ABC is
at least 120◦ then the minimal path network is the connection of the two edges
forming the obtuse angle, called the degenerate tree. If the angles are less than
120◦, then an extra vertex S is added to form the minimal path network, and this
type of tree is called a Steiner tree.

Given A and B, a third point C can lie in one of five regions. Two of these
regions are Steiner regions, where all the angles in 4ABC are less than 120◦. The
length of the tree can easily be found in these regions. Two equilateral triangles are
constructed with common edge AB denoting the two third points of the equilateral
triangles as E-points. The length of the Steiner tree is the length of the Simpson
line, which is the line from C to the E-point on the opposite side of AB. The
other three regions are degenerate; two of them connect A and B directly and then
connects C to one of the endpoints, and the last connects A to C and C to B. This
last region is called the lune of A and B, denoted by L(A,B).

2.2. Euclidean Space vs. the Flat Torus. The Steiner problem is more difficult
than the Steiner problem in Euclidean Space because on the torus there are an
infinite number of straight lines that connect to points on the torus, whereas in
Euclidean space there is only one straight line between two points. To represent
the infinite number of lines between two points on the torus, we have tiled the
Euclidean plane with fundamental domains that contain translates of all the points
on the torus. If A and B are on the torus, then if you choose a point in the
Euclidean plane that represents A, then each different segment between A and a
representation of B represents a different way to connect A and B on the torus.

This unique feature makes the Steiner problem on the torus more difficult than
in Euclidean Space. Fortunately, Keith Penrod has proved that for three points
on the flat torus, the minimal path network must be contained in one rectangular
fundamental domain. While this result reduces the number of possible cases, the
problem on the torus is still more difficult because for three points, there are still
twelve translates of each point to consider in the three-point problem.

3. Overview

We show how to identify the minimal path network connecting three fixed points
on the flat torus under certain conditions. In particular, let T be a torus covered
by a rectangular fundamental domain of dimension l × w. Let A, B, and C, be
points in T. Associated with A and B is a minimal lune region, L(A,B). If AB ≤√

3
4

√
l2 + w2 and C is contained in L(A,B), then the minimal path network is the
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union of the segments connecting A to C and C to B, which are contained in
L(A,B).

Given two fixed points A and B, and one movable point, C, the three regions of
interest can be found. The lune region is the space where ∠ACB is greater than or
equal to 120◦. The degenerate regions are where either ∠CAB or ∠ABC is greater
than or equal to 120◦. The full Steiner regions are above and below the lune, where
the ∠ACB is less than 120◦.

With three steps we can find when the lune path network is minimal:

Step 1. Maximal Lune Network Finding the maximal possible length for a min-
imal path network in L(A,B).

Step 2. Degenerate Case Finding the minimal path network in the degenerate
regions with the point in this region being a translate of one in the lune.

Step 3. Steiner Case Finding the minimal path network in the Steiner regions
with the point in this region being a translate of one in the lune.

By using these results, we find a condition on A and B such that if it is met, then
the minimal path network will be contained in L(A,B).

4. Maximum Path Network Length For a Tree in the Lune

We can construct a lune by circumscribing two circles, one around each of the
two equilateral triangles that have AB as a common edge. The centers of these
circles we define as lune foci. These two circles intersect at points A and B. The
boundary of the lune is defined by the two arcs between A and B. Let L(A,B)
denote the lune of A and B, and let ∂L(A,B) signify the boundary of the lune.

Because all of the angles of an equilateral triangle are 60◦, the arc between A
and B is 120◦. This implies that all points on ∂L(A,B) form a 120◦ angle with A
and B. Given a point C in the lune, the shortest tree to connect A, B, and C is to
connect A to C and C to B.

Theorem 4.1. Suppose A and B are points in the Euclidean plane. Then amongst
all the points C of L(A,B), the sum of the distances AC+CB is maximized at the
points equidistant from A and B on ∂L(A,B).

Proof. Let M be a point in the L(A,B) that forms a tree with maximal length.
Note that because of symmetry, there would exist two points with this property.
Also because of symmetry we can find one maximal tree, and the other will be a
reflection.

First we know that the M that forms the maximal tree cannot be in L(A,B).
Otherwise, there would exist an X on the line perpendicular to AB through the
point M and between M and ∂L(A,B). Let the point D define the intersection of
the perpendicular line and AB. Then by the Pythagorean Theorem, we know that

AD2 +XD2 = AX2

AD2 +DM2 = AM2

then

AX2 −XD2 = AC2 −MD2
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and because we know that XD > MD,

AX2 −XD2 > AM2 −XD2

AX2 > AM2

Therefore AX > AM . Similarly BX > BM . And then AX + BX > AM + BM ,
contradicting that M defines a maximum length tree in the lune.

Therefore M and M∗, the reflection of M about AB, must be on ∂L(A,B). Let
O be the lune focus of L(A,B) corresponding to the arc containing M , and O∗ to
the arc containing M∗ respectively. Let each of these circles have radius r.

Without loss of generality, consider the point M on ∂L(A,B). We know that
the ∠AOB is 120◦. Let θ be the angle ∠BOM , let α be ∠OBM , and by the law
of sines, ∠OMB is equal to α. Then ∠AOM is 120 - θ, ∠OAM is 120 - α, and
∠AMO is 120 - α.

(Picture)
If we bisect the angles θ and 120 - θ, then

AM = 2r sin
θ

2

BM = 2r sin
120− θ

2

The maximum length tree will occur when the derivative of AM +BM = 0. So

d

dθ
(AM +BM) =

d

dθ
(2r sin

θ

2
+ 2r sin

120− θ
2

)

d

dθ
(AM +BM) = r cos

θ

2
− r cos

120− θ
2

Let d
dθ (AM +BM) = 0. Then

r cos
θ

2
− r cos

120− θ
2

= 0

r cos
120− θ

2
= r cos

θ

2

cos
120− θ

2
= cos

θ

2
120− θ

2
=
θ

2
120− θ = θ

θ = 60◦

Then because ∠AOB is 120◦ and θ is 60◦, OM bisects ∠AOB. Therefore M is
equidistant from A and B on the ∂L(A,B), and is a point that maximizes the sum
of AC +CB for all C in the lune. Also by reflection, we know that the other point
that maximizes this sum M∗ is also equidistant from A and B on the ∂L(A,B). �

5. Comparison of Degenerate Regions to Lune Region

(Setup the problem.)
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5.1. Horizontal and Vertical Case. Given AB parallel to the x-axis, for any C
in the Lune, let L′(A,B) be a translate of the lune that contains C ′. The maximum
value of AC+CB will occur when C = M , where M is a point that is on the ∂(A,B)
and equidistant from A and B, as discussed above. If b is half of the length of AB,
then AM +MB = 4b√

3
.

If C is in L(A,B), the closest C ′ that is in the degenerate regions of AB is the
same point as a translate of A (picture). If this is the case, then AB + BC ′ = l,
the length of the fundamental domain. So if 4b√

3
< l, then AC +CB will always be

minimal for C in the lune of a given A and B.
A similar case is when AB is parallel to the y-axis. If 4b√

3
< w the width of the

fundamental domain, then AC + CB will be minimal for a given A and B with C
in L(A,B).

5.2. Non-Horizontal Case. If AB is not parallel to the??? x or y-axis,??? then
there is an angle, α, between AB and the positive x-axis. The midpoint of AB, D,
will be located at (b cosα, b sinα), and translates of D will be at (b cosα+ l, b sinα),
(b cosα, b sinα + w), and (b cosα + l, b sinα + w). These are the only translates
we have to consider because the minimal path network must be contained in one
fundamental domain. The point B will be at (2b cosα, 2b sinα).

Define the circle of rotation, P , to be the circle centered at D with radius b. The
circle of rotation will circumscribe of L(A,B) about the point D. (Picture)

Theorem 5.1. Suppose A and B are points on a fundamental domain of dimension
l × w, in the xy-plane and let α be the angle between AB and the positive x-axis.
Suppose C ′ is a translate of C in L(A,B) in T0,1. Then AB+BC ′ will be less than

or equal to b+
√
b2 − 2bl cosα+ l2.

Proof. By the distance formula, we know that the distance from B to D is

BD =
√

(b cosα− l)2 + (b sinα)2.

Then the distance from B to the edge of P ′ (define.. the circle of rotation) is the
distance from B to the center of P ′ minus the radius of the circle, or√

(b cosα− l)2 + (b sinα)2 − b.

Then BC ′ must be less than or equal to the distance from B to P ′ because C ′ must
be inside P ′. Then if we add AB to both sides and simplify,

AB +BC ′ ≤ 2b+
√

(b cosα− l)2 + (b sinα)2 − b

AB +BC ′ ≤ b+
√

(b cosα− l)2 + (b sinα)2

AB +BC ′ ≤ b+
√
b2 cos2 α− 2bl cosα+ l2 + b2 sin2 α

AB +BC ′ ≤ b+
√
b2 − 2bl cosα+ l2

�

By a similar argument, for a translate C ′′ in T1,0, AB+BC ′′ ≤ b+
√
b2 − 2bw sinα+ w2.

Theorem 5.2. If the ratio l
AB > 1

2 cosα(1 +

√
1 + 16−8

√
3

3 cos2 α ) then AC + CB <

AB +BC ′ for every C in L(A,B) and C ′, a translate of C in T0,1.
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Proof. We know that AB+BC ′ ≤ b+
√
b2 − 2bl cosα+ l2, and that AB+BC has

maximal value 4b√
3
. So when

AC + CB < AB +BC ′

4b√
3
< b+

√
b2 − 2bl cosα+ l2

4b√
3
− b <

√
b2 − 2bl cosα+ l2

(
4b√

3
− b)2 < b2 − 2bl cosα+ l2

(
4√
3
− 1)2b2 < b2 − 2bl cosα+ l2

(
4
√

3− 3

3
)2b2 − b2 − l2 < −2bl cosα

(
16

3
− 8√

3
+ 1− 1)b2 − l2 < −2bl cosα

( 16
3 −

8√
3
)b2 − l2

−2bl
> cosα

l2 + ( 16
3 −

8√
3
)b2

2bl
> cosα

l

2b
− (

16

3
− 8√

3
)
b

l
> cosα

l

2b
− (

8− 4
√

3

6
)
2b

l
> cosα

If x = l
2b , then to solve for x

x− (
8− 4

√
3

6
)
1

x
− cosα = 0

x2 − (
8− 4

√
3

6
)− x cos2 α = 0

Then by the quadratic formula

l

2b
=

cosα±
√

cos2 α− 4(1)( 8−4
√
3

6 )

2

l

2b
=

cosα±
√

cos2 α− ( 16−8
√
3

3 )

2

l

2b
=

cosα(1±
√

1− 16−8
√
3

3 cos2 α )

2
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And since only the positive values have meaning in this case (a better way to say
this?)

l

AB
=

cosα(1 +

√
1− ( 16−8

√
3

3 cos2 α ))

2

�

Similarly, for C ′′ in T1,0, if the ratio

w

AB
>

1

2
sinα(1 +

√
1 +

16− 8
√

3

3 sin2 α
)

then AC + CB < AB +BC ′′ for every C in L(A,B).

Theorem 5.3. Given the points A, B, on the flat torus and C in L(A,B), a
translate of C in T1,1 is not the closest translate of C. (A better way to say this .
. . ?)

Proof. Consider D the center of the circle of rotation in T0,0, D′ in T0,1, and D′′′

in T1,1. Assume D and D′ lie on the x-axis.

If b is the radius of the circle of rotation, b cannot be larger than 1
2

√
l2 + w2,

because otherwise AB does not lie in a single fundamental domain.
Consider when b = 1

2

√
l2 + w2. Let H be the circle of radius 1

2

√
l2 + w2 centered

and D′ and let Q a circle of the same radius centered at D′′′.
Let d be a point on the circle of rotation centered at D, such that 0 ≤ ∠drr′ < π

4 .

The point d is contained in the circle H because if you consider the line x = 1
2 l,

then the boundary of the circle is on the left but the point d is on the right. Also
the point d is not contained in the circle Q because d is below the tangent line
y = −w

l x + w, so d cannot be inside Q. This implies that D′ is closer to d than
D′′′.

Similarly, if d is on the arc of the circle so that π
4 < ∠drr

′ ≤ π
2 , then D′′ in the

vertical domain will be closer than D′′′. And if α = π
4 , then d is the midpoint of

the diagonal of the fundamental domain, which implies that d is equidistant from
the three translates of D.

Now if b be less than 1
2

√
l2 + w2 and π

4 ≤ α ≤ π
2 . Under these conditions, the

maximum value for D′′ and d is at α = π
4 . What now? �

6. Comparison of Steiner Regions to Lune Region

In this section we will be comparing the length of the maximal lune region tree,
the union of AM and MB, with trees in the Steiner region constructed with a
translate of C, a point in the lune region. For the length of the Steiner tree we will
use the Simpson line, the line from E to C ′. Again we will denote b as half of the
length of AB. Given this, the maximum length tree in the lune is 4b√

3
. Denote lune

focus above AB to be O and corresponding translate to be O′.

Theorem 6.1. Suppose, A and B are points in a fundamental domain of a torus of
dimension l×w, AB makes an angle α with the positive x-axis. A new set of axes
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are setup with the center of the lune centered at the origin, then DD′, the segment
from the center of the lune to the center of the translated lune makes an angle β
with the positive x’-axis. (Note that β is also the angle between a horizontal line
through O and OO′.) Suppose E is the E-point for A and B below AB, then for
any C ′ in a translate of L(A,B),

EC ′ ≤

√
l2 +

8bl√
3

sinβ +
16b2

3
− 2b√

3
.

Proof. By the distance formula, we know that the distance from E to M ′ is√
(l cosβ)2 + (l sinβ +

b√
3

+
√

3b)2.

Then the distance from C ′ to M ′ is the radius of the circle, or 2b√
3
. Therefore

EC ′ must be less than or equal to EM ′ − C ′M ′, when we simplify we get EC ′ ≤√
l2 + 8bl√

3
sinβ + 16b2

3 −
2b√
3

�

By a similar argument, for a translate in the vertical domain

EC ′′ ≤

√
w2 +

8bw√
3

sin(90− β) +
16b2

3
− 2b√

3
.

Lemma 6.2. r2− 2
√
3

5 r sinβ−3/20 > 0 if and only if EC ′ > AC+CB for positive
r.

Proof. We know that the maximum length of AC + CB inside the L(A,B) is 4b√
3
.

We want that length to be less than EC ′.

4b√
3
<

√
l2 +

8bl√
3

sinβ +
16b2

3
− 2b√

3

(
6b√

3
)2 < l2 +

8bl√
3

sinβ +
16b2

3
− 2b√

3

36b2

3
< l2 +

8bl√
3

sinβ +
16b2

3

20b2

3
− 8bl√

3
sinβ − l2 > 0

If we divide this by 3l2

20 and note that r = b/l, then we get

r2 − 2
√

3

5
r sinβ − 3/20 > 0.

�

Lemma 6.3. If C ′ is in the Steiner region, then cos(β + 30◦) ≤ 2r/
√

3
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Proof. We want to find what angle β is when M ′ is on the boundary between the
Steiner region and the degenerate region. Note that β is also the angle between
the line parallel to the x-axis through point Mand MM ′. Denote K to be the
intersection of the line parallel to the x-axis through point M and BM ′. We draw
4BMM ′. The length of MM ′ is l, and the length of MB is 2b√

3
. Denote ∠BMM ′

as δ. We know that

cos δ =
2b/
√

3

l
=

2b√
3l
.

It is easy to find that ∠KMB is 30◦. In order for point M ′ to be in the Steiner
region

β ≥ arccos
2r√

3
− 30◦.

From this we see that

cos(β + 30◦) ≤ 2r√
3
.

�

Theorem 6.4. Let r = b
l , if r ≤

√
63+14

√
15

14 then AC +CB < EC ′ for every C in
L(A,B) and C ′, a translate of C in the horizontal domain.

Proof. From before, we know that

r2 − 2
√

3

5
r sinβ − 3

20
> 0.

We can us the quadratic formula to solve for r.

r >

2
√
3

5 sinβ ±
√

12
25 (sinβ)2 + 4 3

20

2

We do not want r to be negative, so

r >

√
3

5
sinβ +

√
3

25
(sinβ)2 +

3

20
.

Now we want to solve cos(β + 30◦) ≤ 2r√
3

for sinβ. By using the cosine sum

formula we get,
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cosβ cos 30◦ − sinβ sin 30◦ ≤ 2r√
3√

3

2
cosβ − 1

2
sinβ ≤ 2r√

3√
3

2

√
1− (sinβ)2 − 1

2
sinβ ≤ 2r√

3

(

√
3

2

√
1− (sinβ)2)2 ≤ (

1

2
sinβ +

2r√
3

)2

3

4
(1− (sinβ)2) ≤ 1

4
(sinβ)2 +

2r√
3

sinβ +
4r2

3

(sinβ)2 +
2r√

3
sinβ +

16r2 − 9

12
≥ 0

We can use the quadratic formula to solve for sinβ.

sinβ ≤
−2r√

3
±

√
4r2

3 − 4 16r2−9
12

2

We do not want sinβ to be negative, so

sinβ ≤ −r√
3

+

√
3− 4r2

4
.

When we put this in for sinβ in our r equation. We find that

r ≤
√

63− 14
√

15

14
≈ .77.

Therefore if

r ≤
√

63− 14
√

15

14
, then EC ′ > AC + CB.

A similar result can be found for the points in the T0,1 fundamental domain,
exchanging w for l and letting β be the angle between the negative x-axis and the
line from O to O′′. �

7. Summary

We have found that given a torus covered by a fundamental domain of , and
given two points A and B separated by a distance of . If a point lies in the L(A,B)
then the minimal path network is the union of segments connecting A to C and C
to B.

8. Conclusion

These results are not tight results, but they are a start. We have experimented
with this problem in Geosketchpad and in Maple, and it appears that these results
are true for greater values of AB, almost for any A and B contained in one funda-
mental domain. In the future we hope to find tighter results, use this to completely
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solve the three point problem on the torus, and to extend the three point problem
to n points on the flat torus.


