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Abstract. Methods for the construction of Steiner minimal trees for n fixed
points in the hyperbolic plane are developed. A brief explanation of Melzak’s
solution for the Euclidean problem is given. One method of construction in
the hyperbolic plane identifies Steiner points as the solution to a system of
equations. This method is derived partially by analogous reasoning to Melzak.
A second method uses numerical approximation to identify the Steiner points.
The properties of Steiner minimal trees in the hyperbolic plane are investi-
gated.
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1. Introduction

What is the least length necessary to construct a path joining an arbitrary num-
ber of fixed points? This question in geometric optimization has come to be known
as the Steiner problem, and there have been numerous articles written on the topic.
Melzak essentially settled the question for the Euclidean plane by describing an
algorithm that will, in a finite number of steps, give the exact minimal path con-
necting an arbitrary number of points. Several well-known survey publications are
[1], [2] and [3]. The topic is now researched by many computer scientists, as the
problem is known to be NP-hard.

While the Steiner problem in Euclidean space has been studied to a great ex-
tent, very few results have been found in the hyperbolic plane. In this paper we
present algorithms for the construction of Steiner minimal trees in hyperbolic space.
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Specifically, methods are presented for the upper-half plane and Poincare disk mod-
els of the hyperbolic plane. The methods developed are applicable to any general
topological space—spheres, tori, and even higher dimensions of space.

After developing the construction algorithms, we briefly analyze the characteris-
tics of Steiner trees in hyperbolic space. A new numerical method of approximating
the Steiner points in any topological setting is given at the end of the paper.

2. Preliminaries

The terms points and vertices will be used interchangeably, but we will typically
refer to points when discussing geometry and vertices when referring to topologi-
cal/graph theoretic properties. We use P to denote a set of points P1, . . . , Pn.

We borrow several terms from graph theory:

Definition 2.1. If there is an edge between two vertices, they are said to be
adjacent. The degree of a vertex is the number of adjacent vertices.

Definition 2.2. A tree is a network (graph) with no cycles; that is, given two
vertices in the network there is only one path between the two. A network is said
to span a set of vertices P if for all Pi, Pj ∈ P , i �= j, there is a path between Pi

and Pj .

If there is no restriction against the introduction of new vertices, the length
required to span P can often be reduced (See Figure 1).

P1

P2

P3

Figure 1. Length reduced by introduction of intermediate point.

Intermediate points that are introduced to shorten the length are called Steiner
points. The points of P are referred to as fixed points to distinguish them from the
Steiner points, and since their location is constant for all spanning networks.

Definition 2.3. Let P be a set of points in the plane and let G be the graph of a
tree that spans P . If each vertex of P has degree 1 and all other vertices of G have
degree 3 or less, then G is called a Steiner topology.

Clearly length minimizers are trees since the network could lose any edge of a
cycle and still span the set of points.
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Definition 2.4. Let G be a Steiner topology. If a tree has topology G and its
length cannot be decreased by any small fluctuation of the vertices, then the tree is
called a Steiner tree (ST). A tree with shortest possible length for a given topology
is called the relatively minimal tree with topology G.

Definition 2.5. Let P be a collection of vertices. The shortest ST that spans P
is called the Steiner minimal tree (SMT).

Note that a relatively minimal tree need not exist for every topology, but that a
SMT is necessarily a relatively minimal tree for its topology.

Observation 2.6. A Steiner tree has at most n − 2 Steiner points, and no two
edges of an ST can meet at an angle with measure less than 120◦.

See [2] for the proofs of these observations.
Finding the SMT on a set of fixed points in the Euclidean plane is commonly

referred to as the Euclidean Steiner problem (ESP). In this paper, the same problem
in the hyperbolic plane will be referred to as the hyperbolic Steiner problem (HSP).
To model the hyperbolic plane, we use the upper-half plane model.

Definition 2.7. The upper-half plane consists of the region y > 0, while the line
y = 0 represents points at infinity. To model hyperbolic space, the metric that is

used has arclength element
�
dx+ 1

dy . A geodesic is the shortest length between

two points. Using this metric, a geodesic is a Euclidean arc with center along the
line y = 0.

The center of arc from P1 to P2 can be found by finding the intersection of the
perpendicular bisector of P1P2 with the x-axis.

3. Melzak’s Algorithm

3.1. Overview of the Algorithm. Melzak [4] found a purely geometric algorithm
for the construction of an SMT in the Euclidean plane. As our methods for the hy-
perbolic plane follow similar reasoning, we present an overview of Melzak’s findings.
Specifically, we give the algorithm in the simplified case of finding the minimal tree
on three fixed points.

Let P1, P2, and P3 be three fixed points in the Euclidean plane. Select two of
the points, say P1 and P2, and construct an equilateral triangle that has P1P2 as
one of its legs. There are two possible orientations for this triangle, and so the third
vertex should be chosen so that it falls on the opposite side of P1P2 as P3. This
third vertex is called the equilateral-point, hereafter referred to as the E-point, and
we denote it as E (see Figure 2).

Construct the circle the circumscribes �P1P2E. Call this circle C. The center
O is easily located by finding the intersection of the perpendicular bisectors of the

sides of �P1P2E. Consider the arc�P1P2 with center O. Since P1P2 is a side of an

equilateral triangle, it subtends 120◦. For any point S on�P1P2, m∠P1SP2 = 120◦.
Therefore,�P1P2 represents the locus of points that form a 120◦ angle with P1 and
P2, and the Steiner point must lie along this arc (see Figure 3).

Construct the line segment EP3 and call S the point of intersection of this

segment with �P1P2. As discussed above, m∠P1SP2 = 120◦. Since ∠P1SE and
∠P2SE subtend arcs of the same length, they have the same measure. Thus,
∠P1SE = 60◦ = ∠P2SE and ∠P1SP3 = 120◦ = P2SP3 (see Figure 4).



4 DENISE HALVERSON AND DON MARCH

P1 P2

P3

E

Figure 2. Construction of the E-point.

P1 P2

P3

E

O

C

Figure 3. Circumscribing �P1P2E.

The point S has 120◦ angles surrounding it, and therefore must be the Steiner
point. It is convenient that the segment EP3 (called the Simpson line) has the
same length as the Steiner tree; that is, EP3 = P1S + P2S + P3S (see Figure 5).

3.2. Challenges in Extending Melzak’s Algorithm. In the Euclidean plane,
it is possible to find the locus of points that form a 120◦ angle with two fixed
points by a ruler and compass construction. In the most common models of the
hyperbolic plane—the Poincare disk and the upper-half plane—there is not an
analogous process available. As will be seen later, the locus is not an elementary
curve.

The main difficulty in adapting the construction detailed above to the hyperbolic
plane is due to the lack of an E-point. In the Euclidean plane, the Steiner point
can be found be drawing a segment from the E-point to the third fixed point. Since
this cannot be done to find a Steiner tree in the hyperbolic plane, we show how the
Steiner point could be found in the Euclidean case by repeating the first part of
the construction.
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P1 P2

P3

E

S

Figure 4. Properties of EP3.

P1 P2

P3

E

S

Figure 5. The resulting ST.

3.3. Adapting the Algorithm. After constructing C, the circle which circum-
scribes �P1P2E, construct the equilateral triangle that has P2P3 as one of its legs.
Again, choose the third vertex of the triangle to lie on the opposite side of P2P3 as
P1. Circumscribe this new triangle in the same way as �P1P2E (see Figure 6).

The arc�P2P3 represents the locus of points that form a 120◦ angle with P2 and

P3. Therefore, the intersection of �P1P2 and �P2P3 forms 120◦ angles with P1, P2,
and P3. Since the Steiner point is unique for three fixed points, this is the point S
that was previously found by use of the E-point.

4. Steiner Tree Constructions in the Upper-half Plane

Suppose that a point S forms a 120◦ angle with P1 and P2 (see Figure 7). Let

C1 be the center of�P1S and C2 be the center of�P2S. (We refer to these arcs since
we are using Euclidean geometry for the constructions in upper half plane model;
in reality the arcs are geodesics in the hyperbolic plane.) Since the radius C1S is

perpendicular to the tangent of �P1S at S, and the same is true of the radius C2S
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P1 P2

P3

S

Figure 6. Alternative construction of the ST.

with the tangent of �P2S, we can find the measure of ∠C1SC2. Combining this
with the fact that radii of an arc have the same length, we have the following three
restraints:

m∠C1SC2 = 60◦ (1)

C1S = C1P1 (2)

C2S = C2P2. (3)

P1 P2

C1C2

S 60◦
120◦

60◦

Figure 7. Restraints on the definition of a Steiner point.

Definition 4.1. The collection of all points S that satisfy the conditionm∠P1SP2 =
120◦ is called the locus of P1 and P2. We denote the locus of P1 and P2 by L(P1, P2).

Let P1 = (x1, y1), P2 = (x2, y2), C1 = (c1, 0) and C2 = (c2, 0). We find an
equation for L(P1, P2) that satisfies the three conditions given above.

From (1) we have
−−→
SC1 · −−→SC2���−−→SC1

��� ���−−→SC2

��� = cos 60◦ =
1

2
.
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Using equations (2) and (3) and substituting the coordinates,

−−→
SC1 · −−→SC2���−−→SC1

��� ���−−→SC2

��� =

−−→
SC1 · −−→SC2���−−−→C1P1

��� ���−−−→C2P2

���
=

< c1 − x,−y > · < c2 − x,−y >�
(c1 − x1)2 + (−y1)2

�
(c2 − x2)2 + (−y2)2

=
(c1 − x) (c2 − x) + y2��

(x1 − c1)
2 + y 2

1

� �
(x2 − c2)

2 + y 2
2

� .
Therefore,

y2 =
1

2

��
(x1 − c1)

2
+ y 2

1

��
(x2 − c2)

2
+ y 2

2

�
− (c1 − x) (c2 − x) . (4)

Since c1 and c2 are uniquely determined by P1, P2, and S, we seek substitutions to
reduce the number of parameters.

(x1 − c1)
2
+ y 2

1 = (x− c1)
2
+ y2x 2

1 − 2x1c1 + c 2
1 + y 2

2 = x2 − 2xc1 + c 2
1 + y2

It follows that

c1 =
1

2
· x

2 − x 2
1 + y2 − y 2

1

x− x1

and similarly,

c2 =
1

2
· x

2 − x 2
2 + y2 − y 2

2

x− x2
.

Substituting back into (4), we find

y2 =
1

2

�	

x1 − 1

2
· x

2 − x 2
1 + y2 − y 2

1

x− x1

�2

+ y 2
1

�	

x2 − 1

2
· x

2 − x 2
2 + y2 − y 2

2

x− x2

�2

+ y 2
2

�
−


1

2
· x

2 − x 2
1 + y2 − y 2

1

x− x1
− x

�

1

2
· x

2 − x 2
2 + y2 − y 2

2

x− x2
− x

�
.

This equation gives an implicit formula for part of L(P1, P2). However, due to
distortions caused by the upper-half plane model, it is also necessary to consider
points S where

−−→
SC1 · −−→SC2���−−→SC1

��� ���−−→SC2

��� = cos 120◦ = −1

2
.

An illustration of why this is necessary is given in Figure 8 where m∠P1SP2 =
m∠C1SC2 = 120◦ (see Figure 8).

We define H(S, P1, P2) to be

±1

2

�	

x1 − 1

2
· x

2 − x 2
1 + y2 − y 2

1

x− x1

�2

+ y 2
1

�	

x2 − 1

2
· x

2 − x 2
2 + y2 − y 2

2

x− x2

�2

+ y 2
2

�
−


1

2
· x

2 − x 2
1 + y2 − y 2

1

x− x1
− x

�

1

2
· x

2 − x 2
2 + y2 − y 2

2

x− x2
− x

�
− y2.

so that S ∈ L(P1, P2) only if H(S, P1, P2) = 0 (see Figure 9).
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P1 P2

C2

S

Figure 8. An 120◦ angle where m∠C1SC2 = 120◦.

Figure 9. Plot of H(S, P1, P2) = 0 where P1 = (−2, 1) and P2 = (2, 1).

Unfortunately, H(S, P1, P2) includes points that form 120◦ and 60◦ angles with
P1 and P2. We therefore restrict our attention to the part of the plot that gives
L(P1, P2) (see Figure 10).

Figure 10. L(P1, P2) where P1 = (−2, 1) and P2 = (2, 1).
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As defined previously, L(P1, P2) represents all points S that form a 120◦ with
P1 and P2. Therefore, a point that satisfies H(S, P1, P2) = 0 and H(S, P2, P3) = 0
must lie on the intersection of L(P1, P2) and L(P2, P3), and is therefore a Steiner
point (see Figure 11).

Figure 11. Intersection of L(P1, P2) and L(P2, P3).

Once the Steiner point is located, it is a simple geometric construction to draw
the geodesics of the Steiner tree (see Figure 12).

Figure 12. ST constructed on three points in the hyperbolic plane.

This method can be extended to suit an arbitrary number of fixed points. A
full Steiner tree on n fixed points will have n − 2 Steiner points. Each of these
must form 120◦ angles with the three vertices adjacent to it. This can be expressed
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mathematically by

H(S1, N11 , N21) = 0

H(S1, N21 , N31) = 0

...

H(Si, N1i , N2i) = 0

H(Si, N2i , N3i) = 0

...

H(S(n−2), N1(n−2)
, N2(n−2)

= 0

H(S(n−2), N2(n−2)
, N3(n−2)

= 0

where Ni1 , Ni2 , and Ni3 are the vertices adjacent to Si. Thus, the solution to
a Steiner tree on n vertices requires solving a system of 2(n − 2) simultaneous
equations.

5. A Numerical Algorithm

The following algorithm is proved by several arguments using the relative mea-
sures of angles. At each step it should be noted that the validity of the argument
does not depend on the parallel postulate; thus, while the pictures show an appli-
cation to the ESP, the algorithm also holds for hyperbolic and spherical space.

Definition 5.1. Let A, B, and C be three fixed points. Define M(A,B,C) to be
the location of the Steiner point for the SMT on A, B, and C.

Note that M is well-defined since there is a unique intermediate point for the
SMT.

Suppose a1 is a point on L(P1, P2). Let b1 = M(a1, P1, P2). We recursively
define ai+1 = M(P1, P2, bi) and bi+1 = M(P3, P4, ai+1) (see Figure 13).

P1

P2

P3

P4

S1

S2

ai

bi
ai+1

Figure 13. Definition of {an} and {bn}.

Since for any four fixed points there is a unique tree that has 120◦ angles at the
Steiner points, we can show that these sequences of points {an} and {bn} converge
to S1 and S2, respectively.

Lemma 5.2. All terms of an and bn lie on the same side of S1S2.
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Proof: If bi were to lie on the opposite side of ai, then m∠aiS2P4 < m∠aibiP4.
Also, m∠S1S2P4 < m∠aiS2P4. But by hypothesis m∠aibiP4 and m∠S1S2P4 are
both 120◦, so we have 120◦ = m∠S1S2P4 < m∠aiS2P4 < m∠aibiP4 = 120◦, a
contradiction (see Figures 14 and (see Figure 15)).

P1

P2

P3

P4

S1
S2

ai

bi

Figure 14. m∠aiS2P4 < m∠aibiP4.

P1

P2

P3

P4

S1 S2

ai

bi

Figure 15. m∠S1S2P4 < m∠aiS2P4.

Lemma 5.3. The point bi+1 lies on the same side of aibi as ai+1.

Proof: By the previous lemma, if ai+1 is on the same side of aibi as S1, then bi+1 is
as well. Since m∠aibiP4 = 120◦, m∠ai+1biP4 < 120◦. Were bi+1 to lie on the other
side of aibi, then the angle would decrease again, so that m∠ai+1bi+1P4 < 120◦. A
symmetric argument proves the case that ai+1 is on the opposite side of aibi as S1

(see Figure 16).

P1

P2

P3

P4

S1 S2

bi+1

ai
biai+1

Figure 16. The point bi+1 lies on the same side of aibi as ai+1.
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Theorem 5.4. The sequences {an} and {bn} converge to S1 and S2, respectively.

Proof: From the lemmas, {an} and {bn} are monotonic—they move in only one
direction along L(P1, P2) and L(P3, P4). On one side they are bounded by P1 and
P2, and on the other they are bounded by S1 and S2. Since the sequences are
monotonic and bounded, they must converge to some points A and B. However, by
definition of the sequences A = M(P1, P2, B) and B = M(P3, P4, A). This requires
that the angles around A and B are all 120◦, and by the uniqueness of the Steiner
tree, A = S1 and B = S2.

This algorithm can easily be extended to find the ST on more than three points
by a straightforward use of recursion. The benefit of doing so is that the problem
is reduced to a repeated solution of the three point problem. In some instances this
may take much less computational time than solving a system of 2(n− 2) simulta-
neous quartic equations.
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