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Abstract. Given a surface and n fixed points on the surface, the Steiner
problem asks to find the minimal length path network in the surface connect-
ing the n fixed points. The solution to a Steiner problem is called a Steiner
minimal tree. The Steiner problem in the plane has been well studied, but un-
til recently few results have been found for non-planar surfaces. In this paper
we examine the Steiner problem on both narrow and wide cones. We prove
several important properties of Steiner minimal trees on cones and present an
algorithm solving the three point problem. We discuss how the algorithm for
the 3 point problem can be generalized to an algorithm for the n point prob-
lem. These results are preliminary to solving the Steiner problem on piecewise
linear or polyhedral surfaces, since any piecewise linear surface may be viewed
as a locally finite union of overlapping cones.

1. Introduction

The Steiner problem on a surface is to find the minimal length path network on
the surface connecting a specified set of points. An illustrative application of the
Steiner problem is finding the cost minimizing design of telephone lines or other
wiring systems. This has prompted extensive research into developing efficient
algorithms for solving Steiner problems in the plane. Until recently however,
few results have been obtained for non-planar surfaces, which limits areas of
application. For example, many wiring projects need to account for mountainous
terrain or changes in elevation.

Our results are an important step in developing an algorithm for solving Steiner
problems on arbitrary piecewise-linear (or polyhedral) surfaces. Any piecewise
linear surface may be viewed as a locally finite union of overlapping cones. This
paper presents an algorithm for solving Steiner problem on narrow and wide
cones.

2. Preliminaries

A narrow cone may be constructed by cutting a sector out of the plane and glu-
ing together the edges of the remaining sector. A wide cone may be constructed
by cutting along a ray and inserting a sector into the plane in the natural way.
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A Steiner problem begins with a specified set of points a1, a2, . . . , an on a
surface. These points are called terminals. It is desired to find the least length
path network connecting the terminals. The desired solution must be a tree, since
deleting an edge of any cycle would shorten the path network. When additional
points s1, s2, . . . , sk are introduced as vertices in a tree, these additional points
are called Steiner points. Terminals that are connected to the same Steiner point,
each by a single edge of the tree, are called siblings. The degree of a point is the
number of edges in a tree that meet at that point.

The Steiner minimal tree for n points a1, a2, . . . , an on a given surface is the
shortest tree on that surface connecting a1, a2, . . . , an. A locally minimal tree is a
tree whose length cannot be shortened by small perturbations of its Steiner points.
Weng [6] showed that for a minimal tree on curved surfaces, edges meeting at
any point of the tree must form angles of measure at least 120◦, and have degree
no more than 3. In particular Steiner points have degree 3 and angles formed at
Steiner points have measure equal to 120◦. A Steiner tree is a tree that satisfies
these angle conditions. Since the Steiner minimal tree must be a minimal tree,
it will always be a Steiner tree. In the plane, if a tree is a Steiner tree, this
implies that it is also a minimal tree. However this is not true in general on
curved surfaces, where it is possible for a Steiner point that satisfies the angle
condition to be a maximal or saddle point with respect to the length of the tree.
For example, let three equidistant points on the equator of a sphere be the set of
terminals. A Steiner tree with its Steiner point at a pole is a maximal tree.

From a counting argument, the maximum number of Steiner points in a Steiner
tree with n terminals is n − 2. A Steiner tree for n points is called full if every
terminal has degree 1. A full Steiner tree will have the maximum n − 2 Steiner
points distinct from each terminal. Gilbert and Pollack define a Steiner tree as
degenerate if it has fewer than n − 2 Steiner points [2]. However, for simplicity
of argument in this paper we assert that all Steiner trees have n − 2 Steiner
points, and a degenerate Steiner tree is one in which one or more Steiner points
coincide with a terminal. Thus, in a degenerate tree, the angle formed by two
edges meeting at a Steiner point has measure greater than or equal to 120◦.

We define a g-minimal tree to be a minimal tree where every edge of the tree
is a minimal geodesic. Note that a minimal tree need not be a g-minimal tree
if there exists more than one geodesic connecting two points on a surface. The
Steiner minimal tree will always be a g-minimal tree.

For a given set of terminals, two trees connecting them will be said to be in
the same Steiner topology class provided there is an isotopy from each one to the
other that fixes the terminal points (hence each tree can be pushed onto the other
in the surface without moving the terminals). A tree for n points a1, a2, . . . , an
is called relatively minimum if it is the shortest tree connecting a1, a2, . . . , an of
all trees with the same Steiner topology. Figure 1 shows two relatively minimum
trees with different Steiner topologies for points A1, A2, A3, and A4. In Figure 1
A1 and A2 are siblings on the left, while on the right A1 and A3 are siblings.
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Figure 2. Three point Steiner problem in the plane

We will now describe a classical algorithm for constructing the minimal tree
for three points, A,B, and C, in the plane. Suppose there exists an interior
angle of 4ABC with angle measure greater than or equal to 120◦. Without loss
of generality suppose m∠ABC ≥ 120◦. This is the degenerate case, and the
minimal tree is AB∪BC (or AS∪BS∪CS where S = B). If instead all interior
angles of 4ABC have measure less than 120◦ then the Steiner point is distinct
from A, B, and C and is contained in the interior of 4ABC. The Steiner point
can be found using the following construction on one of 4ABC’s edges: We use
BC. Construct the equilateral triangle 4CBE with the point E opposite the

point A with respect to
←→
CB. (For the purposes of this paper, when we refer

to the ‘E-point’ we are referring to the point E obtained in this construction.)
Construct a circle D that circumscribes 4CBE, and then construct the line
segment EA. This line segment is called the Simpson line. The intersection of
the Simpson line and the circle is the Steiner point S, and the minimal tree is
AS ∪ BS ∪ CS. It has also been shown by Coxeter that for a non-degenerate
tree, the length of the Simpson line is equal to the total length of the minimal
tree [2].
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3. Properties of G-Minimal Trees on Narrow and Wide Cones

In this section we will develop the theoretical basis for our analysis of trees
on cones. Following are several results that will allow us to isolate properties of
g-minimal trees and of the Steiner minimal tree that apply to both narrow and
wide cones.

Propositon 3.1. The Steiner minimal tree for a given set of n-points on a cone
exists.

Proof. The proof is standard and follows from an application of the extreme value
theorem for continuous functions over compact sets. �

While the above proposition applies to any set of n points on a cone, this
section and the two following give results for three points on a given cone. The
extension to n points is found in Section 6.

For the three point problem we will call the three terminals a, b, and c, and
the vertex of the cone v. Because of the possible confusion of angles at the
vertex, we will define ∠∗avb as follows: Suppose a, b, and c are distinct from

the vertex v and none of −→va,
−→
vb, or −→vc are the same. Let ∠∗avb be the angle

whose interior is traversed as −→va rotates counterclockwise to
−→
vb, looking down

along the axis of the cone. In the same way, sector∠∗avb will be the sector of the

cone traversed by −→va as it rotates counterclockwise to
−→
vb. Throughout this paper,

unless otherwise specified, we will assume that the three such points are labeled
such that sector∠∗avb does not include c in its interior. (This last condition is
really a statement about the orientation of a, b, and c.) Suppose instead that a,

b, and c are distinct for the vertex but at least two of −→va,
−→
vb, and −→vc coincide. We

define the angles the same counter clockwise orientation applies as before. For

example if −→va =
−→
vb, then m∠∗avb = 0 and sector∠∗avb = −→va, while sector∠∗bva

is the entire cone. In either case we will refer to a, b, and c as oriented in this
triple. If one of a,b, and c coincides withe the vertex v, then the angles involving
that point are undefined. We will address this case separately in our proofs.

The cone angle will be defined as the unique number ψ = m∠∗xvy +m∠∗yvx
where x and y are points on the cone distinct from the vertex v. For narrow
cones ψ < 360◦, and for wide cones ψ > 360◦. In the case that ψ = 360◦ we have
a flat cone that is equivalent to the Euclidean plane.

In several of the proofs that follow we will use a projection map, rotational
projection, which we define now: Let points x and y on a cone be given. We
will define rotational projection as a projection of all points in sector∠∗xvy onto
−→vx (or alternatively −→vy). For p ∈ sector∠∗xvy, its projection p′ ∈ −→vx has the
property vp = vp′. Let γ be a path in the sector∠∗xvy. We use the coordinates
p = (r, θ) where r = pv and θ = m∠∗ovp for some base ray −→vo. The length of γ

is l =
∫
γ

√
dr
dt

2
+ r2 dθ

dt

2
dt. Let γ′ be the image of γ under rotational projection.
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Figure 3. Rotational Projection

The path length of γ′ is given by l′ =
∫
γ′

dr
dt
dt. It is easy to see that l′ ≤ l. Thus

rotational projection is length reducing for a path network in the sector. Also
note that in the case that γ does not have a constant θ value within sector∠∗xvy
this inequality is strict (l′ < l).

For a path γ between two points x and y on a cone, we call sector∠∗xvy (or
sector∠∗yvx) a complement sector to γ if it does not contain any points of γ in
its interior, or in other words if given any point d such that d ∈ sector∠∗xvy,

then
−→
vd ∩ {γ − {−→vx,−→vy}} = ∅.

We let xy denote the path that connects x and y with the least length. Note
that this path may or may not pass through the vertex. This will be the minimal
geodesic from x to y. Similarly a minimal tree with Steiner point at s is a g-
minimal tree if it is given by as∪ bs∪ cs (if it is comprised of minimal geodesics).
The following proposition describes the relation between minimal geodesics on
the cone and complement sectors.

Propositon 3.2. Suppose x and y are points on a given cone distinct from v.
Then minimal geodesic xy has the following properties:

(1) There exists a complement sector to xy.
(2) If m∠∗yvx > m∠∗xvy then sector∠∗yvx is the complement sector to xy.

Proof. To see (1), suppose that there exists a path γ between the points x and
y on some cone, C, that passes through the interior of both sector∠∗xvy and
sector∠∗yvx. Parameterize the path γ by γ : [0, 1] → C where γ(0) = x and
γ(1) = y. Since γ passes through the interiors of both sectors, there must needs
be a point γ(t) for 0 < t < 1 such that γ(t) ∈ −→vx∪−→vy and the paths α = γ|[0,t] and
β = γ|[t,1] have non-constant θ values. Suppose γ(t) ∈ −→vx. Rotationally project α
on to −→vx to find α′. Since α has non-constant θ values, this map is strictly length
reducing. Thus α′ ∪ β has less length than γ. Rotational projection of β finds a
similar result if γ(t) ∈ −→vy. Thus γ is not a minimal path, and minimal geodesic
xy will not pass through the interiors of both sector∠∗xvy and sector∠∗yvx. The
sector whose interior is not traversed will be a complement sector to xy.
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To see (2), suppose that m∠∗yvx > m∠∗xvy. Let α be an arbitrary path
between x and y on the cone such that α ∩ int(sector∠∗yvx) 6= ∅. We will show
that α does not have minimal length. Let x′ be the point on the cone opposite
x, i.e. x′ is a ψ/2 rotation of x around the cone. Then y ∈ sector∠∗xvx′.
Reflect all points of α in sector∠∗x′vx onto sector∠∗xvx′ such that for point
p ∈ sector∠∗x′vx it’s refection p′ ∈ sector∠∗xvx′ has the property m∠∗pvx =
m∠∗xvp′ and vp = vp′. The image of α under reflection, α′, is entirely contained
in sector∠∗xvx′ and has the same path length as α. Rotationally project all
points of α′ in sector∠∗yvx′ onto −→vy. Since this projection is length reducing,
the resultant path α′′ has length less than α′. Since for every α * sector∠∗xvy
there exists α′′ ⊂ sector∠∗xvy with shorter length, minimal geodesic xy must
be contained in sector∠∗xvy. Thus sector∠∗yvx will be the complement sector
to xy. In the case that m∠∗xvy = m∠∗yvx the minimal geodesic need not be
unique, and both sector∠∗xvy and sector∠∗yvx are complement sectors to some
minimal geodesic. �

Remark 3.3. Note that if m∠∗yvx ≥ m∠∗xvy and m∠∗xvy < 180◦ then xy
is the map of a straight line segment onto the cone, not containing the vertex.
This implies that on a narrow cone no minimal geodesic will contain the vertex
since m∠∗xvy ≤ ψ/2 < 180◦. On a wide cone if m∠∗yvx ≥ m∠∗xvy ≥ 180◦ then
xy = xv ∪ vy.

Similar to the complement sector to a minimal geodesic, we call sector∠∗avb,
sector∠∗bvc, or sector∠∗cva a complement sector to a g-minimal tree on points
a, b, and c if that sector contains no point of the tree in its interior. The following
proposition extends our result for minimal geodesics to g-minimal trees.

Propositon 3.4. Suppose T is a g-minimal tree for terminals a, b, and c and s
is its Steiner point distinct from v, (T need not be full). Let K be the intersection
of the complement sectors of the edges of T . Then

(1) K is non-empty,
(2) K is one of sector∠∗avb, sector∠∗bvc, or sector∠∗cva, and
(3) K is a complement sector to T .

Proof. Without loss of generality suppose s ∈ sector∠∗avb. We will show sector∠∗sva
is a complement sector to as. Suppose not: then sector∠∗avs is the complement
sector. Thus m∠∗bvs ≥ m∠∗cvs ≥ m∠∗avs ≥ ψ/2 ≥ m∠∗sva ≥ m∠∗svc ≥
m∠∗svb. It follows that sector∠∗bvs and sector∠∗cvs are complement sectors of
bs and cs respectively. Then K = sector∠∗avs and T is contained in sector∠∗sva.

Rotationally project T ∩ sector∠∗svb onto
−→
vb while fixing T ∩ sector∠∗bva. The

result is a path network connecting a, b, and c with less length than T . This
violates the condition that movement of Steiner points cannot decrease the total
length of a minimal tree, and a contradiction is found. Thus the complement
sector to as is sector∠∗sva. Similarly sector∠∗bvs is the complement sector to
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bs. Now −→vc is contained in the complement sector of cs, as well as in sector∠∗sva
and sector∠∗bvs. Then −→vc is a contained in K, so K is non-empty, proving (1).

The complement sector to geodesic cs is either sector∠∗svc or sector∠∗cvs.
Suppose sector∠∗svc is its complement sector. Then K is sector∠∗bvc. Otherwise
the complement sector to cs will be sector∠∗cvs and K will be sector∠∗cva. Then
for any g-minimal tree, K is sector∠∗avb, sector∠∗bvc, or sector∠∗cva. Note that
K could be sector∠∗avb in the case where s /∈ sector∠∗avb. This proves (2).

(3) follows from the definition of K. �

Remark 3.5. The proof for Proposition 3.4 supposed that the Steiner point
s 6= v. The key result however is still true for s = v. Note that for such a tree,
similar arguments show that sector∠∗avb, sector∠∗bvc, and sector∠∗cva are all
complement sectors to the tree.

The following proposition for points in the plane is derived from standard
theorems of geometry and will be stated without proof. It will be helpful in
considering subsequent theorems.

Propositon 3.6. Let A, B, and C be three distinct points in the plane, and
suppose S ∈ sector∠∗ABC, then m∠∗ABC < m∠∗ASC.

The following discussion extends our results for complement sectors. The key
theorem states that g-minimal trees with a given complement sector are unique.
This implies that if two g-minimal trees have a common compliment sector, then
they must be equivalent. The results of this theorem will be vital to our discussion
of Steiner trees on both narrow and wide cones, though in differing application.

Theorem 3.7. All g-minimal trees on a cone with a given complement sector
are unique.

To prove this theorem we begin by defining a map of a cone into the plane such
that g-minimal trees on the cone map to obstacle avoiding g-minimal trees in the
plane. We show that the obstacle avoiding g-minimal trees under consideration
are unique, and subsequently we define a one-to-one function between between
g-minimal trees on the cone and obstacle avoiding g-minimal trees in the plane.
The proof of Theorem 3.7 then follows trivially.

Suppose T is a g-minimal tree for points a, b, and c on a cone with sector∠∗cva
as a complement sector. We define the viewpoint map of point b, Φb, to be a map of

the cone into the plane defined as follows. Let
−→
vb+ be a clockwise rotation of

−→
vb by

min{180◦,m∠∗avb}. If m∠∗avb > 180◦, rotationally project sector∠∗avb+ onto
−−→
vb+. Similarly define

−→
vb− a counter-clockwise rotation by min{180◦,m∠∗bvc}

and rotationally project sector∠∗b−vc onto
−→
vb−. Seeing that m∠∗b+vb− ≤ 360◦,

we lay out sector∠∗b+vb− in the plane such that
−→
vb coincides with the negative

x-axis. We ignore sector∠∗b−vb+ since after rotational projection it will contain
no point of the tree T . Let the image of a point p on the cone be labeled P when
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mapped into the plane. Label the reflection of the point B in the plane across
the y-axis B′.

We denote the image of the cone under Φb described above as Λ. Consider
the image of T under the viewpoint map of b, Φb(T ). If a point x of T lies in
sector∠∗avb we consider its image X under the map to be in the upper half plane,

even if it lies on
−−→
V B′, and similarly if y ∈ sector∠∗bvc then Y is considered in

the lower half plane. Under these assumptions Φb(T ) will be an obstacle avoiding
g-minimal tree for points A, B, and C in the plane where the obstacle is the two

sided ray
−−→
V B′. Here a g-minimal tree is obstacle avoiding if no part of the tree

crosses through
−−→
V B′, except possibly at the vertex. Note that a g-minimal tree

is obstacle avoiding if and only if sector∠∗CV A is a complement sector to the
tree. (See [3] for further information regarding obstacle avoiding trees.)

Lemma 3.8. There is a unique obstacle avoiding g-minimal tree for points A,
B, and C in the plane with a two sided ray obstacle as in the setting described
above.

Proof. Take any arbitrary obstacle avoiding g-minimal tree Q on Φb with Steiner
point S. Construct the planar g-minimal tree on A, B, and C, call it R,
and label its Steiner point S ′. This g-minimal tree is unique in the plane.

If R does not pass through
−−→
V B′ except possibly at V , then Q = R and is

uniquely determined. Otherwise, R crosses
−−→
V B′ on either S ′A or S ′C. Without

loss of generality suppose S ′C crosses
−−→
V B′. Then V ∈ sector∠∗BS ′C. Thus

m∠∗BV C ≥ m∠∗BS ′C ≥ 120◦. It follows that S /∈ sector∠∗BV C. Since no
point of Q is contained in the interior of sector∠∗CV A, then S ∈ sector∠∗AV B.
Also since m∠∗AV B ≤ 180◦, neither SA nor SB pass through the vertex. Now

since R passes through
−−→
V B′, there does not exist a obstacle avoiding g-minimal

tree in Λ that does not contain V . Thus V ∈ SC. This implies that Q includes
V C and the remainder of Q is a planar g-minimal tree on points A, B, and
V . The uniqueness of this tree in the plane implies that Q is uniquely deter-
mined. Since Q is uniquely determined in both cases, this implies that bounded
g-minimal trees are unique on Λ. �

We define the function ϕb(T ) that maps trees on points a, b, and c that are g-
minimal in sector∠∗avc, with complement sector sector∠∗cva, to obstacle avoid-
ing g-minimal trees on points A, B, and C in Λ. Let ϕb(T ) be the image of
g-minimal tree T under the map Φb. This function is well defined since the
image of a g-minimal tree under Φb is a obstacle avoiding g-minimal tree.

Lemma 3.9. ϕb(T ) is a one-to-one function.

Proof. Since ϕb(T ) is well defined, we need only show that any obstacle avoiding
g-minimal tree in Λ has a unique inverse image. Let Q be an arbitrary obsta-
cle avoiding g-minimal tree in Φb. Note that the restriction of Φb to interior of
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sector∠∗b+vb− on the cone is an isometry. If m∠∗avb < 180◦ and m∠∗bvc < 180◦

this implies that Q has a unique inverse image on the cone. Suppose instead

that m∠∗avb ≥ 180◦. Then a is mapped by Φb onto
−−→
V B′. Then by the construc-

tion of obstacle avoiding g-minimal trees found in Lemma 3.8, Q ∩
−−→
V B′ in the

upper half plane must be V A. If we assert that the inverse image of Q must
be a g-minimal tree on the cone, V A has the unique inverse image va on the
cone. Similarly for the lower half plane if m∠∗bvc ≥ 180◦. Since both portions,

int(sector∠∗B′V B′) and
−−→
V B′, have a unique inverse image under ϕb(T ), ϕb(T )

is a one-to-one function. �

We now have all the tools necessary to complete the proof of Theorem 3.7.
Proof of Theorem 3.7. To show the uniqueness of g-minimal trees with a given
complement sector, suppose there are two such trees T1 and T2 on a given cone
with the same complement sector. Without loss of generality suppose that this
sector is sector∠∗cva. Since obstacle avoiding g-minimal trees are unique in Λ,
ϕb(T1) = ϕb(T2). But since ϕb(T ) is one-to-one, this implies that T1 = T2. Thus
g-minimal trees with a given complement sector are unique.

Lemma 3.10. Let a g-minimal tree on an oriented triple of points a, b, and c
with Steiner point at s be given with sector∠∗cva a complement sector. If the
tree does not pass through the vertex then,

(1) m∠∗avc < 240◦ and
(2) m∠∗avb < 180◦ and m∠∗bvc < 180◦.

Proof. Since sector∠∗cva a complement sector to the tree then s ∈ sector∠∗avc.
Now since as and cs do not pass through the vertex, we note that m∠∗avc <
m∠∗asc = 240◦ by Proposition 3.6, proving (1).

If the g-minimal tree is degenerate and is equal to ab ∪ bc, then both of these
minimal segments do not contain the vertex, and m∠∗avb and m∠∗bvc are less
than 180◦. Otherwise a degenerate g-minimal tree would contain the minimal ge-
odesic ac which does not contain the vertex, so m∠∗avb ≤ m∠∗avc < 180◦.
Similarly m∠∗bvc < 180◦. If the g-minimal tree is non-degenerate suppose
m∠∗bvc ≥ 180◦. Now s /∈ sector∠∗avb, since otherwise m∠∗svc > 180◦ and
sc would contain the vertex. Thus s ∈ sector∠∗bvc. But that would imply by
Proposition 3.6 that 180◦ < m∠∗bvc < m∠∗bsc = 120◦, a contradiction. There-
fore m∠∗bvc, and similarly m∠∗avb, must be less than 180◦, showing (2).

�

Remark 3.11. Lemma 3.10 states necessary conditions for a g-minimal tree that
does not pass through the vertex. These are not however conditions sufficient to
conclude that a g-minimal tree does not pass through the vertex. Sufficient
conditions are complex and somewhat ambiguous, though for a non-degenerate
tree it is sufficient to show that when the e-point is constructed opposite ab from
c the Simpson line does not contain the vertex, and for a degenerate tree to show
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that the shorter of ac and bc does not contain the vertex. In this case the g-
minimal tree will not pass through the vertex. The exact conditions follow with
proof omitted:

(1) Suppose m∠∗bac ≥ 120◦ or m∠∗acb ≥ 120◦. The tree will not contain the
vertex if and only if m∠∗avc < 180◦.

(2) Suppose m∠∗cba ≥ 120◦. Conditions (1) and (2) from Lemma 3.10 are
sufficient to show that the tree does not contain the vertex.

(3) Suppose the g-minimal tree is non-degenerate. The tree will not contain
the vertex if and only if

m∠∗vcb+m∠∗cba+arcsin[
sin(m∠∗vba+ 60◦)(vb)√

(vb)2 + (ab)2 − 2(ab)(vb) cos(m∠∗vba+ 60◦)
] > 120◦.

4. The Three Point Steiner Problem on Narrow Cones

In this section we will develop an algorithm that will solve the three point
Steiner problem on a narrow cone. Our algorithm transforms the three point
problem on the cone to the three point problem on the plane. This is done by
cutting along −→vx on the cone, where v is the vertex of the cone and x is a point
on the cone distinct from v, and laying the cone flat in the plane. When laid out
in the plane, the surface of the cone will cover all but a sector of the plane. The
portion of the plane not covered by the laid out cone we will call the cut wedge.

We first show that the Steiner minimal tree connecting three given points will
be contained within the region of the laid out cone for a cut along an appropriate
ray. We will then present an algorithm for cutting a cone to find and compare
all possible g-minimal trees, thus isolating the Steiner minimal tree.

4.1. Three Candidate g-Minimal Trees. In subsequent proofs we require a
method of cutting the cone to use the geometric properties of the plane, as
mentioned above. This will be done more specifically in the following manner:

A ray −→vx will be given. Cut the cone along −→vx. Lay the cone flat in the plane
with vertex v at the origin and the cut wedge centered on the positive x-axis. Let
R be the region in the plane that is covered by the laid out cone after cutting.
We will label the points in R as follows: if p is a point on the cone that does not
lie on −→vx then its corresponding point in R is unique and we will label that point
in R as P . If p lies on −→vx then there are two points in R on the border of the
cut wedge that correspond to p, one in the upper half plane and one in the lower
half plane. Label the point in the upper half plane P and the point in the lower
half plane P ′. (See Figure 4)

Lemma 4.1. Suppose T is a g-minimal tree for given points a, b, and c on a
narrow cone with a given complement sector. If the cutting method is applied to

the cone for a cut along any ray
−→
vd where d is in the complement sector, then the

image of T in the laid out cone will be a Steiner minimal tree for the points A,
B, and C in the plane.
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Figure 4. The Cone in the Plane

Proof. This follows from Lemma 3.4. Without loss of generality let sector∠∗cva
be the given complement sector to the g-minimal tree T . Cut along

−→
vd for some

d ∈ sector∠∗cva. Since
−→
vd∩{as∪bs∪cs−{−→va,

−→
vb,−→vc}} = ∅,

−→
vd will not intersect

T , save perhaps at a terminal. Thus the image of T will be a connected graph
in R. Note also that the edges of T , being minimal geodesics on a narrow cone,
will be straight line segments in the plane not containing the vertex. Since laying
the cone out into R is an isometric mapping, the angle conditions for T as a
g-minimal tree on the cone imply that the image of T is also a Steiner tree in R.
Since there is only one Steiner topology for three points in the plane, the image
of T must be the Steiner minimal tree for points A, B, and C in the plane. �

By Theorem 3.7 we note that there are at most three g-minimal trees for
three points on a narrow cone, one corresponding to each of the three possible
complement sectors. Any g-minimal tree must have a complement sector and
thus be equivalent to one of these three. Proposition 3.1 shows us that there
must be at least one g-minimal tree, the Steiner minimal tree. Unfortunately we
cannot be certain that given one of sector∠∗avb, sector∠∗bvc, or sector∠∗cva that
there exists a g-minimal tree with that sector as its complement. For example,
suppose that when the cone is laid out in the plane by a cut in sector∠∗avb, the
g-minimal tree connecting points A, B, and C in the plane passes through the
cut wedge. Then a g-minimal tree with sector∠∗avb as its complement sector is
not constructible on the cone.
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Remark 4.2. It is useful to note that if a g-minimal tree exists with a given
complement sector, it may be laid out in the plane by a cut along any ray in that
sector. This includes the rays on its boundary. Note then that −→va ⊆ sector∠∗avb
and −→va ⊆ sector∠∗cva. Thus since −→va is in two different complement sectors,
a cut along −→va will yield two g-minimal trees contained in R (assuming both
trees are constructible). In this case the tree contained in sector∠∗avc will be
mapped to a g-minimal tree in R on the points A, B, and C. The tree contained
in sector∠∗bva will be mapped in R to a g-minimal tree on points A′, B, and

C. Thus cutting along the rays −→va,
−→
vb, and −→vc will allow us to compare two

g-minimal trees in the same plane. We will use this tool in the next section as
we describe the cutting algorithm that allows us to compare g-minimal trees and
isolate the Steiner minimal tree.

4.2. Cutting Algorithm. Given a narrow cone with vertex v and distinct points
a, b, and c on the cone also distinct from v, our cutting algorithm will proceed
as follows:

Since there are at most three possible g-minimal trees on the narrow cone,
let the g-minimal tree formed in the plane by a cut in sector∠∗avb be denoted
T1. Note that all cuts in this sector yield congruent g-minimal trees. Similarly
denote the tree formed by a cut in sector∠∗bvc as T2 and the tree formed by
a cut in sector∠∗cva as T3. Cut along −→va. Because −→va ⊆ sector∠∗avb and
sector∠∗cva, there are two possible g-minimal trees constructible in the laid out
cone; T1 and T3. Construct these two g-minimal trees in the plane (if possible)
and compare their total length. If at any time one of the trees for comparison
is not constructible, it may be ignored. If T1 has length less than or equal to

T3 make a new cut along
−→
vb, otherwise make the new cut along −→vc. Note that

the shorter of the T1 and T3 will again be represented in the laid out cone with
respect to the new cut. Thus we will similarly be able to compare the shorter tree
of the first two with T2, the last of the three candidates for the Steiner minimal
tree. The shorter of these two remaining trees will be the Steiner minimal tree.

In the case that one of the points a, b, or c coincides with the vertex, the
solution greatly simplifies. Without loss of generality suppose that c = v and
that m∠∗avb ≤ m∠∗bva. The Steiner minimal tree must then be contained in
sector∠∗avb, since reflection followed by rotational projection is length reducing
for any tree that exits sector∠∗avb, as in Lemma 3.4. Thus there is only one
possible complement sector, sector∠∗bva. Cutting along −→va and laying out the
cone in the plane will allow you to identify the only g-minimal tree possible,
which will be the Steiner minimal tree.

Example 4.3. Suppose points a, b, and c on a narrow cone of ψ = 300◦ are
given such that cutting along −→va yields the laid out cone on the left in Figure
5. Constructing the two g-minimal trees (one using point A, the other using
A′) shows that the g-minimal tree contained in sector∠∗AV C, on points A, B,
and C, is shorter than the tree in sector∠∗BV A′, on points A′, B, C. If both
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Figure 5. The cutting algorithm

trees were non-degenerate, we could compare lengths of the two Simpson lines,
but since one is degenerate, we compare its total length to the other tree. Since
the tree contained in sector∠∗AV C has total length less than the tree contained
in sector∠∗BV A′, our next cut will be along −→vc, as on the right in Figure 5.
The tree contained in sector∠∗AV C in the previous laid out cone is congruent
to the tree contained in sector∠∗AV C in the new laid out cone. When the two
g-minimal trees are constructed in the new laid out cone however, we notice that
the g-minimal tree for points A, B, and C ′ crosses the cut wedge, and is not
contained in sector∠∗C ′V B. This g-minimal tree is thus not constructible on the
cone, and may be ignored. Then the g-minimal tree contained in sector∠∗AV C,
on points A, B, and C, has the shortest total path length of all g-minimal trees
on any laid out cone. When this tree is mapped back onto the cone, it will be
the Steiner minimal tree for points a, b, and c on the cone.

We have here shown that the three point Steiner problem on narrow cones
may be solved by laying out the cone in two cuts and comparing three candidate
positions for the Steiner minimal tree. However, this method is not possible on
the wide cone since the wide cone cannot be laid out in the plane. The following
section will deal with this case and present algorithms that solve the three point
Steiner problem on wide cones.
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Figure 6. Gg-minimal trees of Types III, II, and I

5. The Three Point Steiner Problem on Wide Cones

In this section we consider the Steiner problem for three points a, b, and c on
a wide cone. The following proves that there is only one g-minimal tree for any
three points on a given wide cone. Since there is only one g-minimal tree on a
wide cone, this must also be the Steiner minimal tree. Algorithms that identify
this g-minimal tree are presented subsequently.

5.1. Uniqueness of g-Minimal Trees on Wide Cones. At this point it is
useful to define a classification of g-minimal trees on wide cones on three points
a, b, and c distinct from the vertex v. A g-minimal tree on a wide cone for which
the Steiner point lies on the vertex will be called type III. A g-minimal tree in
which the interior of one edge of the tree meets the vertex will be called type II.
Lastly, a g-minimal tree that does meet the vertex will be called type I. Note that
types II and I also include degenerate g-minimal trees for which the Steiner point
is considered to coincide with one of the three terminals. See Figure 6.

Before we prove uniqueness it will be advantageous to describe some properties
of g-minimal trees of type III, II, and I. Note that Lemma 3.10 applies specifically
to g-minimal trees of type I. (All g-minimal trees for three points distinct from
the vertex on narrow cones are of type I.) In particular let T be a g-minimal tree
of type I for points a, b, and c on the cone such that complement sector of T is
sector∠∗cva. Then m∠∗avc < 240◦, m∠∗avb < 180◦, and m∠∗bvc < 180◦. The
following two lemmas deal with g-minimal trees of types II and III respectively,
proving comparable results for each.

Lemma 5.1. Suppose T is a g-minimal tree of type II with Steiner point s such
that s ∈ sector∠∗avb. Then

(1) m∠∗avb < 120◦,
(2) m∠∗bvc > 120◦, and m∠∗cva > 120◦.
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Proof. (1) follows directly from Lemma 3.6: m∠∗avb < m∠asb = 120◦.
Note that v ∈ sc. Since m∠∗bsv ≥ 120◦, it follows that m∠∗svb < 60◦.

Since minimal geodesic sc passes through the vertex, m∠∗svc ≥ 180◦. Thus
m∠∗bvc = m∠∗svc − m∠∗svb > 180◦ − 60◦ = 120◦. Similarly m∠∗cva > 120◦,
proving (2). �

Lemma 5.2. Suppose T a g-minimal tree of type III. Then m∠∗avb ≥ 120◦,
m∠∗bvc ≥ 120◦, and m∠∗cva ≥ 120◦.

Proof. This follows directly from the properties of minimal trees. Otherwise, a
small movement of the Steiner point in the direction of the narrower sector would
shorten the tree. �

One last note of interest is that g-minimal trees on a wide cone may have more
than one complement sector. While Proposition 3.4 states that every g-minimal
tree connecting three points on a cone has at least one complement sector, trees
of types II and III have two and three complement sectors respectively. We will
utilize this fact in our proof of uniqueness using Theorem 3.7.

We now prove the uniqueness of g-minimal trees on a wide cone.

Theorem 5.3. There exists one and only one g-minimal tree for three points on
a given wide cone.

Proof. For points a, b, and c on a given wide cone, by Lemma 3.1 the Steiner
minimal tree exists with Steiner point at s, possibly coinciding with a, b, c, or
v. It is helpful to note that as a consequence of Lemma 3.4 and the above
classifications, there are exactly seven possible configurations for a g-minimal
tree on a wide cone: one of type III (where s = v), three of type II (where
s ∈ sector∠∗avb, sector∠∗bvc, or sector∠∗cva, and three of type I (where the g-
minimal tree is entirely contained in sector∠∗avc, sector∠∗bva, or sector∠∗cvb).
We will prove the uniqueness of g-minimal trees on wide cones by considering the
type of the Steiner minimal tree and eliminating all other possible configurations.

Case I: Suppose the Steiner minimal tree is of type I. Without loss of generality
suppose that its complement sector is sector∠∗cva. By Theorem 3.7 any
g-minimal tree with this sector as its complement is identical to the Steiner
minimal tree. The three configurations that fail to meet this condition
are a tree of type II with Steiner point contained in sector∠∗cva and trees
of type I contained in sector∠∗bva or sector∠∗cvb. Since by Lemma 3.10
m∠∗avc < 240◦, on the wide cone m∠∗cva = ψ−m∠∗avc > 360◦−240◦ =
120◦. Thus by Lemma 5.1 there can be no g-minimal tree of type II with
its Steiner point contained in sector∠∗cva. Now suppose there is a g-
minimal tree, T , of type I contained in sector∠∗bva. This implies that
m∠∗avb > 120◦ and m∠∗bvc < 120◦ by applying Lemma 3.10 to both the
Steiner minimal tree and T . Since both m∠∗avb > 120◦ and m∠∗cva >
120◦, the Steiner point of both trees must be contained in sector∠∗bvc.
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Suppose one of these trees is full, and without loss of generality, let this
be the Steiner minimal tree. The uniqueness of minimal geodesics on
the wide cone implies that the Simpson line ea is unique and cannot
be contained in both sector∠∗avc and sector∠∗bva without containing
the vertex. Thus T cannot be full. In addition, ea passing through bc
implies that m∠∗ace < 180◦. But m∠∗acb = m∠∗ace − 60◦ < 120◦, and
similarly m∠∗cba < 120◦. If T is degenerate it must have its Steiner
point in sector∠∗bvc coincide with either b or c, but since the angles
formed at those terminals are less than 120◦, neither will be a g-minimal
tree. Because of this contradiction neither tree can be full. Suppose
instead that both trees are degenerate. In this case each tree is equal to
the union of the shortest two of the segments ab, bc, and ac. This also
leads to a contradiction since these are identical and cannot be contained
in two distinct sectors. Thus there cannot be another Steiner tree of
type I contained in sector∠∗bva nor similarly in sector∠∗cvb. The Steiner
minimal tree proves to be the unique g-minimal tree on the wide cone.

Case II: Suppose the Steiner minimal tree is of type II. Without loss of generality,
suppose s ∈ sector∠∗avb. This implies that v ∈ sc, and sector∠∗bvc and
sector∠∗cva are both complement sectors of the Steiner minimal tree. All
g-minimal trees that share either of these complement sectors are identical
to the Steiner minimal tree by Theorem 3.7. The only one of the seven
possible configurations of a g-minimal tree on the cone that does not meet
this condition is a tree of type I with complement sector sector∠∗avb. By
Lemma 5.1, m∠∗avb < 120◦ and m∠∗bva = ψ−m∠∗avb > 360◦− 120◦ =
240◦. Thus by Lemma 3.10 there can exist no g-minimal tree of type
I contained in sector∠∗bva, and the Steiner minimal tree is the unique
g-minimal tree on the cone.

Case III: Suppose the Steiner minimal tree is of type III (s = v). Since any other g-
minimal tree must have a complement sector in common with the Steiner
minimal tree, Theorem 3.7 implies that the Steiner minimal tree is the
unique g-minimal tree on the cone, as all other g-minimal trees must be
identical to it.

�

5.2. Isolating g-minimal Trees on Wide Cones. In this section we will de-
scribe constructions for g-minimal trees on the wide cone. The constructed tree in
each case will be the Steiner minimal tree because of the uniqueness of g-minimal
trees proven in the previous section.

Let a, b, and c be an oriented triple of points distinct from the vertex. We
consider the angles ∠∗avb, ∠∗bvc, and ∠∗cva. There are three cases, namely: (1)
all angles have measure ≥ 120◦, (2) exactly two angles have measure ≥ 120◦, and
(3) exactly one angle has measure ≥ 120◦. Note that on the wide cone there must
be at least one angle that has measure ≥ 120◦. Theorems 5.4, 5.5, and 5.7 will
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address cases (1), (2), and (3) respectively. Theorem 5.8 will then address the
case where one of the terminals a, b, or c lies on the vertex.

Theorem 5.4. Suppose a, b, and c are an oriented triple of points on a wide
cone distinct from the vertex such that m∠∗avb ≥ 120◦, m∠∗bvc ≥ 120◦, and
m∠∗cva ≥ 120◦. Then the Steiner minimal tree for points a, b, and c is of type
III and is equivalent to av ∪ bv ∪ cv.

Proof. We note by the angle conditions found in Lemma 3.10 and Lemma 5.1
that no g-minimal tree of types II or I may exist on this wide cone. Since the
Steiner minimal tree must exist by Proposition 3.1, the Steiner minimal tree must
be of type III and equivalent to av ∪ bv ∪ cv. �

Theorem 5.5. Suppose a, b, and c are an oriented triple of points on a wide cone
distinct from the vertex such that m∠∗avb < 120◦ and both ∠∗bvc and ∠∗cva have
measure greater than or equal to 120◦. Then the Steiner minimal tree will be of
type II or I and its Steiner point will be contained in sector∠∗avb. Moreover if
the Steiner tree is degenerate, it will include ab.

Proof. Since m∠∗avb < 120◦, Lemma 5.2 implies that there are no g-minimal
trees of type III on the cone. Also m∠∗bvc > 120◦ and m∠∗cva > 120◦ imply by
Lemma 5.1 that no g-minimal tree of type II exists with Steiner point contained
in sector∠∗bvc or sector∠∗cva. By Lemma 3.10, there is no g-minimal tree of
type I contained in sector∠∗bva. Thus the Steiner minimal tree must be either
type II with Steiner point contained in sector∠∗avb or of type I contained in
sector∠∗avc or sector∠∗cvb. Note that in any case the Steiner point must be
contained in sector∠∗avb. Thus in the degenerate case s = a or s = b. This
implies that if the Steiner minimal tree is degenerate, it must include the edge
ab.

The following cases give conditions for the delineation of types II and I. The
g-minimal tree found will be the Steiner minimal tree due to uniqueness Theorem
5.3. To get started construct the e-point of ab opposite c. If this e-point does not
exist, the tree is of type I contained in the triangle ab ∪ bc ∪ ac. Construct the
geodesic ec. (This will be ev ∪ vc if m∠∗evc and m∠∗cve are ≥ 180◦)

Case I: ec does not intersect ab. Construct ac and bc. Without loss of generality,
suppose that ac has a shorter total length.

Case A: ac does not pass through v. The Steiner minimal tree is degenerate
of type I and is ab ∪ ac.

Case B: ac passes through v (m∠∗avc and m∠∗cva ≥ 180◦). The Steiner
minimal tree is degenerate of type II and is ab ∪ av ∪ vc.

Case II: ec intersects ab.
Case A: ec does not pass through v. The Steiner minimal tree is a full tree

of type I with line segments as ∪ bs ∪ cs, where s ∈ ec is the Steiner
point found using the e-point construction on points a, b, and c.
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Figure 7. Cases for Theorem 5.5

Case B: ec passes through v (m∠∗evc and m∠∗cve ≥ 180◦). The Steiner
minimal tree is a full Steiner tree of type II with line segments as ∪
bs ∪ sv ∪ vc, where s ∈ ev is the Steiner point found using the e-
point construction on points a, b, and v. Note that s /∈ vc since
s ∈ sector∠∗avb.

�

Remark 5.6. Note here that the above argument utilizes the same conditions
mentioned in Remark 3.11. The more exact conditions mentioned therein will
delineate between trees of type II and I without the need of an e-point construc-
tion.

Theorem 5.7. Suppose a, b, and c are an oriented triple of points on a wide cone
distinct from the vertex such that m∠∗cva ≥ 120◦ and both ∠∗avb and ∠∗bvc have
measure less than 120◦. Then the Steiner minimal tree is of type I contained in
sector∠∗avc.

Proof. Since m∠∗avc < 240◦, we lay sector∠∗avc out in the plane. Construct the
g-minimal tree on points A, B, and C in the plane, call it T , with Steiner point
at S. It is sufficient to show that T is contained in sector∠∗AV C.

First suppose T is full. We now show that sa ⊂ sector∠∗AV E and does
not contain the vertex. See Figure 8. Since T is full, the Simpson line EA
crosses BC. Note V cannot be inside the circle circumscribing 4BCE, since
m∠∗BV C < 120◦. (The angle between B and C from any point on the boundary
of this circle has measure 120◦ while any point on the interior must have measure
greater than 120◦ by Lemma 3.6.) Let M be the intersection of V B with the
circle and N be the intersection of V E with the circle. Since ∠∗BV E cuts the



THE STEINER PROBLEM ON NARROW AND WIDE CONES 19

M

N

E

C

B

V

A

Figure 8. Construction for Theorem 5.7

circle with two secant lines,

m∠∗BV E =
1

2
(m(

_

BE)−m(
_

MN)) <
1

2
(120◦) = 60◦.

Therefore, m∠∗AV E = m∠∗AV B + m∠∗BV E < 120◦ + 60◦ = 180◦. Since
m∠∗AV E < 180◦, EA ⊂ sector∠∗AV C and does not pass through the ver-
tex. Thus SA ⊂ EA does not pass through the vertex and is contained in
sector∠∗AV C. Similarly SC ⊂ sector∠∗AV C and does not pass through the
vertex. Now both sector∠∗AV B and sector∠∗BV C are convex and SB must be
contained in one of these sectors. This implies that SB ⊂ sector∠∗AV C. Since
S is not at the vertex, SB does not pass through the vertex. These results imply
that T is contained in sector∠∗AV C and does not contain the vertex.

Suppose instead that T is degenerate. Either T = AB ∪ BC, T = AB ∪ AC,
or T = AC ∪ BC. Note that AB and BC are contained in sector∠∗AV C
and do not contain the vertex since m∠∗AV B < 120◦ and m∠∗BV C < 120◦.
Thus if T = AB ∪ BC, then T is contained in sector∠∗AV C and does not
contain the vertex. Suppose instead that T = AB ∪ AC. Then m∠∗BAC ≥
120◦. Thus m∠∗AV B < 180◦ − m∠∗BAV < 180◦ − m∠∗BAC < 60◦. Now
m∠∗AV C = m∠∗AV B + m∠∗BV C < 60◦ + 120◦ = 180◦ implies that AC is
contained in sector∠∗AV C and does not contain the vertex. Thus T is contained
in sector∠∗AV C and does not contain the vertex. The same result follows from
a similar argument if we suppose instead that T = AC ∪BC.

In in any of the above cases, T is contained in sector∠∗AV C and does not
contain the vertex. Thus when T is mapped back onto the cone, the result is a g-
minimal tree of type I contained in sector∠∗avc. Uniqueness implied by Theorem
5.3 shows that this is the Steiner minimal tree. �
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The next theorem deals with the case where one of a, b, or c coincide with the
vertex. Since the vertex must always be contained in any g-minimal tree on these
points, classification into types III, II, or I no longer apply.

Theorem 5.8. Suppose a and b are an oriented pair of points on a wide cone
having vertex v and m∠∗avb ≤ m∠∗bva. The Steiner minimal tree for a, b, and
v is contained in sector∠∗avb, and if m∠∗avb ≥ 120◦, then the Steiner minimal
tree for a, b, and v is degenerate and equal to av ∪ bv.

Proof. Note that sector∠∗bva is a complement sector to the Steiner minimal tree.
Otherwise the tree could be shortened by arguments similar to Propositions 3.2
and 3.4. Thus the Steiner minimal tree is contained in sector∠∗avb. Suppose
m∠∗avb ≥ 120◦. This angle condition implies that the Steiner minimal tree must
be degenerate with Steiner point at v. (See [2, 6]) Thus the Steiner minimal tree
is equal to av ∪ bv in this case. �

6. The n-point problem

For n > 3, the n-point Steiner problem on the cone has additional complexity,
the same as the n-point problem in the plane. In particular, the number of
possible combinatorial structures that may realize a g-minimal tree increases as
n increases. Recall that there are at most n − 2 Steiner points in a g-minimal
tree. Thus the only possible combinatorial structures for a g-minimal tree on
three points is three segments meeting at a distinct Steiner point in the full
case or two edges of the triangle formed by the three points in the degenerate
case. However, as illustrated in Fig. 9, for n > 3 there are many more possible
combinatorial configurations.

Definition 6.1. Suppose that T1 and T2 are trees connecting a given set of n
terminals in a surface S and X ⊂ S. We say that T1 and T2 have the same
Steiner topology relative to X, denoted T1 ' T2 rel X, if:

(1) For i = 1, 2, there are embeddings ξi : T → Ti for some abstract tree T .
(2) There is an isotopy H : T × I → S between ξ1 and ξ2 that fixes the

terminals of T and satisfies H(T × (0, 1)) ⊂ S −X.

The collection of all trees in the surface having the same Steiner topology as T1
is denoted [T1] and is called the Steiner topology class of T1.

Recall that a g-minimal tree is a local minimizer, i.e., the tree is comprised
of minimal length segments and the length of the tree cannot be shortened by
small movements of the Steiner points. To identify the Steiner minimal tree, one
should consider all possible Steiner topologies for trees connecting the given n
terminals that can be realized as a g-minimal tree. The shortest amongst these
g-minimal trees is the Steiner minimal tree.

The minimal path network connecting n points, without allowing the addition
of vertices, is called a minimal spanning tree. Note that any degenerate g-minimal
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Figure 9. Full Steiner topologies for six points.
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tree is the union of minimal spanning trees and full g-minimal trees on subsets
of the given terminals. Thus the constructibility a configuration can be broken
down to the constructibility of a collection of minimal spanning trees and full
g-minimal trees.

The minimal spanning tree connecting a given set of terminals {vi1, vi2, . . . , vik}
is always realized on surfaces for which minimal segments between any two points
exists. Constructing the minimal spanning tree is a fairly simple matter using
Prim’s Algorithm. Choose one of the the points. Find the point closest to it and
construct a minimal segment between the two points. Now two points have been
selected. Given j selected points, find a point, not yet selected, that is closest
to the selected set. Construct a minimal segment connecting this point to the
point in the selected set closest to it. The minimal spanning tree is the union of
segments constructed after all points have been selected.

A full g-minimal tree connecting a given set a terminals having a given Steiner
topology is not always realizable. However, if it can be realized the construction
can be reduced to a series of three point problems. Here we will provide some
details as to how Melzak’s algorithm in the plane can be applied to construct a
full g-minimal tree having a prescribed Steiner topology for an n-point Steiner
problem on a cone.

6.1. Melzak’s Algorithm. Let P0 = {A1, A2, . . . , An} be the given set of termi-
nals and T0 a given combinatorial configuration on P0. It is desired to construct
a full G-minimal tree having the combinatorial configuration of T0, if possible.
There are two phases to the construction: the de-construction phase and the
reconstruction phase.

The De-Construction Phase

It is a basic fact that every tree has at least two pairs of siblings. Without loss
of generality suppose that A1 and A2 are siblings in T0. Let E1 be an e-point for
A1 and A2. Let T1 be the configuration obtained by replacing the combinatorial
carrot (∧) in T0, designating A1 and A2 as siblings, with a vertex labelled E1. Let
P1 = {B1, B2, . . . , Bn−1} be the set of points {E1, A3, . . . , An} ordered so that
B1 and B2 are siblings in T1. We will define Pk+1 and Tk+1 for k = 1, . . . , n − 2
by induction. At the kth stage suppose that Pk = {X1, X2, . . . , Xn−k} and Tk
are given so that X1 and X2 are siblings in Tk. Let Tk+1 be the configuration
obtained by replacing the combinatorial carrot in Tk, designating X1 and X2 as
siblings, with a vertex labelled Ek+1. Let Pk+1 = {Y1, Y2, . . . , Yn−k−1} be the set
of points {Ek+1, X3, . . . , Xn−k} ordered so that Y1 and Y2 are siblings in Tk+1,
when k < n− 2. (Note that if k = n− 2, then Tk+1 consists of two points.)

The Re-Construction Phase
The set Tn−1 contains precisely two points. Connect these two points by a

line segment and label the segment Γn−1. (This initial line segment is called
a Simpson line. The length of the Simpson line is the same as the length of
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the g-minimal tree that will result at the end of the reconstruction phase, if
constructible.) For j = n−2, . . . , 1, let Fj+1 be a vertex of Γj+1 that is connected
to Ej+1 by a single segment σj+1. (Note that σn−1 = Γn−1.) Let X1 and X2 be the
points in the de-construction phase that where replaced by Ej+1 at the jth stage.
Let τj be the solution to the three point Steiner problem on {X1, X2, Fj+1}. If
τj is not full, then the desired construction is not possible. If τj is full, define
Γj = (Γj+1−Ej+1Fj+1)∪ τj. If the construction is successful at every stage, then
the tree Γ1 is a g-minimal tree with the desired combinatorial structure.

6.2. The n-point problem on narrow and wide cones. In order to generalize
the work done in the previous sections, we consider an alternative, but equivalent,
point of view.

To set the scenery, let C be a cone, either narrow or wide, with cone angle φ,
vertex v, and designated ray −→vx. We assign each point p ∈ C − {v} coordinates
[ρ, θ] where ρ is the distance from p to v and θ = m∠∗xvp. In the case that p = v,
then we assign ρ = 0 but leave θ to be arbitrary. Let Γ = {(x, y) ∈ R2 |x ≥ 0}
and define a map ΠC : Γ→ C such that ΠC(x, y) = [x, y]. Note that the restriction
of ΠC to the interior of Γ is a covering map for C − {v}. Likewise define map
ΠP : Γ→ R2−{0} such that ΠC(x, y) = (x cos y, x sin y). Then the restriction of
ΠP to the interior of Γ is a covering map for R2 − {0}.

Consider three distinct points a1, a2, a3 ∈ C − {v}. Let T ∗ ⊂ C − {v} be an
arbitrary tree connecting {a1, a2, a3}, not necessarily consisting of geodesics. We
desire to find the relatively minimal tree in the Steiner topology class [T ∗], which
we will denote as T ∗min. Since ΠC is a covering map, we can lift T ∗ into Γ via ΠC
and then project onto R2 via ΠP . Let Ai be the image of ai in R2. Let T̂ be
the solution to the planar Steiner problem on {A1, A2, A3} in R2. Now since ΠP
is a covering map, we can lift T̂ into Γ via ΠP and then project onto C via ΠC.
Care is taken to that the image of Ai under these maps is again ai. Let T be
the image of T̂ . If T ∈ [T ∗], then T ∗min = T . If not, then T ∗min will contain v.
In the case of the narrow cone, T ∗min cannot be the g-minimal tree and hence the
g-minimal tree can not be in the class [T ∗]. In the case of the wide cone, this case
is momentarily disregarded, but then will be reconsidered in an additional step.
The additional step is to add the v to the set of terminal points and consider
the possible solutions to the resulting four point problem with a degeneracy at v.
The compositions of maps above are easily continuously extended by identifying
v ∈ C with 0 ∈ R2. The relatively minimal tree amongst the minimals over all
indicated Steiner topologies is the desired g-minimal tree.

The n-point problem now generalizes easily. Let a1, a2, . . . , an ∈ C − {v} and
T ∗ ⊂ C − {v} be an arbitrary tree connecting {a1, a2, . . . , an}. We desire to find
T ∗min, the relatively relatively minimal tree in the Steiner topology class [T ∗]. Lift
T ∗ into Γ via ΠC and then project onto R2 via ΠP . Let Ai be the image of ai
in R2. Let T̂ be the solution to the planar Steiner problem on {A1, A2, . . . , An}
in R2. Next lift T̂ into Γ via ΠP and then project onto C via ΠC. Care is taken
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so that the image of Ai under these maps is again ai. Let T be the image of
T̂ . If T ∈ [T ∗], then T ∗min = T . If not, then T ∗min will contain v and in both
cases of the narrow and wide cones, this tree is disregarded from consideration.
An additional step in the case of the wide cone is that v is added to the set of
possible terminal points. However, v is really a super terminal point in the sense
that it is allowed to have degree ranging from 2 through n. (In the case of the
planar Steiner problem, the maximum degree of a terminal is 3.) The relatively
minimal tree amongst the minimals over all indicated Steiner topologies is the
desired g-minimal tree.

This discussion is only intended to be a outline of the strategy for the general
n-point problem. Details for the general n-point problem such as characterizing
all possible Steiner topologies and pruning strategies to reduce the number of
cases considered are beyond the scope of this paper, but may be the subject of
future work.

7. Applications

It is a well known fact that any piecewise continuous surface may be approxi-
mated arbitrarily well by a piecewise linear surface. A piecewise linear surface is
a surface composed of triangular cells, which meet only at edges or at vertices.
On such a surface, a vertex may be represented by of either a narrow or a wide
cone structure. The results in this paper may be useful in further research in
solving the Steiner problem on on any piecewise linear surface and hence any
piecewise continuous surface by approximation.
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