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Abstract. In this paper, we show how to find the shortest path
between two points on a regular tetrahedron. We describe a general
solution to find the shortest path between n points that lie on the
same face. In the case that two points lie on distinct faces, we
describe a tiling of the plane and a cutting strategy that leads to
finding the shortest path on the tetrahedron.

1. Introduction

In this paper, we will show how to find the shortest distance between
two points on the regular tetrahedron. This problem is in a class of
problems of shortest path networks on non-planar surfaces. A short-
est path network is the union of paths connecting n points so that
the total distance is minimized. The problem of finding the shortest
path between two points on a tetrahedron is non-trivial because, in
general, there are infinitely many straight line segments on the regular
tetrahedron connecting two points.

We devise a cutting strategy to find the shortest distance between
two points on the regular tetrahedron. This result is essential to solving
shortest length network problems for n points, with n > 2.

2. Overview

Two points on a tetrahedron can share a face or lie on distinct faces.
We first characterize the solution to a more general problem which is
to find the shortest path network connecting n points that all lie on the
same face. In particular, we prove a more general result which shows
that the shortest path network containing n points on the same face of
the tetrahedron is contained in that face. In the case that two points
are on distinct faces, we describe a tiling and a cutting strategy to find
the shortest path.
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3. Points on a Common Face

Theorem 1. For n coplanar points in Rk, the shortest path network
connecting these points is contained in the convex hull of the points.

Proof. Let {A1, ..., An} be points contained in the plane Q in R. Let

Π : Rk → R2×{~0} be the standard projection map so that Π(x, y, ~z) =

(x, y,~0). Without loss of generality assume Q is contained in R2 ×
{~0}. Then Π is an isometry on Q. Also, for any path network α
in Rk, `(Π(α)) ≤ `(α). Let ρ be the shortest path network connect-
ing {A1, ..., An} in Q. Let β be any other path network connect-
ing {A1, ..., An} in Rk. Hence Π(β) is a path network connecting
{Π(A1), ...,Π(An)}. Then

`(ρ) ≤ `(Π(β)) ≤ `(β).

Thus ρ is the shortest path network in Rk connecting {A1, ...., An}.
From classical results, we know that the shortest path network con-
necting n points in the plane is contained in the convex hull of the
points. Therefore, ρ is contained in the convex hull of {A1, ..., An}. �

Corollary 2. If {A1, ..., An} are points on the same face of a regular
tetrahedron, then the shortest path network connecting the points is
contained in that face.

Corollary 3. If p and q are vertices on T , then the shortest path
connecting p and q is the edge, pq.

4. Points on Distinct Faces

We will now consider the case where both points are on distinct faces.
In order to efficiently identify all of the possible paths, we will tile the
plane with the faces of the tetrahedron.

4.1. Tiling the Plane. Consider a regular tetrahedron with faces
f1, f2, f3, and f4. A tile that will be constructed in the plane corre-
sponding to fi on T , will be denoted as Fi, but in our figures labeled as
i. Cut along the edges and lay the faces out in the plane as in Figure
1.

Figure 1
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The tiling of the plane is generated by rotating copies of the faces
180◦ about their vertices. Note that one point on T corresponds to
infinitely many points in the plane. For a point a on T we will denote
a point corresponding to a in the tiled plane as A. This is illustrated
in Figure 2. The projection map that rewraps the tiled plane around
the tetrahedron matching each copy of Fi to fi will be denoted as Ψ.

Figure 2

Definition 4. Let T be a regular tetrahedron and Ψ be the projection
map that rewraps the tiled plane around the tetrahedron matching
each copy of Fi to fi. Let p be a point on T . Then a lift of p is a point
P so that Ψ(P ) = p.

Definition 5. Let T be a regular tetrahedron and Ψ be the projection
map described in Definition 4. Let α : [0, 1]→ T be a path. Then a lift
of α is a path α∗ : [0, 1]→ R2 so that the following diagram commutes:

R2

Ψ

��
??

??
??

??

[0, 1]

α∗
==zzzzzzzz

α
// T

Remark 6. If a path does not pass through a vertex then its lift is
unique. Note that the lift of a path would branch into two directions at
any vertex and would not be unique. The argument showing uniqueness
is similar to the proof of the path lifting theorem for covering spaces
(See [5]).

We will show that it is not necessary to consider infinitely many paths
in order to connect two points. We will describe a region, F -Star, that
contains the lift of the shortest path between two points.
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4.2. F -Star. Consider the tiling described in Section 4.1. For a speci-
fied point P in F1 in the plane, F3[P ]-Star is the region shown in Figure
3 which contains P in a hexagon that is bounded by copies of F3. In
the given figure, F3-Star is outlined in bold. Note that Fi[P ]-Star is a
different region for i = 2, 3, 4.

Figure 3

Theorem 7. If p and q are on T , where p is in fi, p is not a vertex of
T , α is the shortest path from p to q on T , and P is a lift of p in R2

as described in Definition 4, then the lift of α based at P is contained
in Fi[P ]-Star.

Proof. Assume we have the labeling of the faces of T as described
previously in Section 4.1. Without loss of generality, let p be on f1.
Let α∗ denote the lift of α.

Case 1: Suppose q is also on f1. Then by Corollary 2, α is contained on
f1. By Definition 5, the lift of f1, which contains P , is contained
in F1[P ]-Star. Hence the lift of α based at P is in F1[P ]-Star.

Case 2: Suppose q is not on f1. Without loss of generality, let q be on
f3. Consider F3[P ]-Star. Note that P is bounded by six copies
of F3. We will prove this case by proving the contrapositive of
the statement of the theorem. In particular, we will prove that
if α∗ based at P is not contained in F3[P ]-Star, then α is not
the shortest path from p to q on T .

Case a: Suppose α passes through a vertex. From [4] we know that
the shortest path between two points on a cone never passes
through the cone point. This can be generalized to say
that the shortest path between two points on the regular
tetrahedron never passes through the vertex. Thus, α is
not the shortest path.
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Case b: Suppose α does not pass through a vertex. Let Q be the
endpoint of α∗ and suppose α∗ leaves F3[P ]-Star. See Fig-
ure 4. Since α∗ goes outside of F3[P ]-Star, then it meets a
copy of F3 in a path from points A to B where A and B
are in the boundary of the copy of F3. Note Q is outside
of F3[P ]-Star. Let a be the point on T corresponding to A.
Let β be the sub-path from a to q. Then the lift of β must
be a sub-path of α∗ which is not entirely contained in a
copy of F3. According to Corollary 2, α is not the shortest
path.

�

Figure 4

We will now show that it is not necessary to consider all paths within
the Fi-Star region to connect two points. Here we describe a cutting
strategy that will give three contending shortest paths to connect two
points on the regular tetrahedron.

4.3. Cutting Strategy. Consider a regular tetrahedron and two points
p, q on distinct faces. Cut from q to the three vertices on the same face
as q. Label the vertex v that is not on the same face as q. Choose a
point w such that m∠wvp = 90◦. Cut along −→vw. Lay the tetrahedron
flat in the tiling so that the cut region, τ , contains P , a lift of p. Shown
in Figure 5 is the case where q is on f3 and p is on f1. Note that τ
is contained in F3[P ]-Star. There is another copy of τ also contained
in F3[P ]-Star, the rotation of τ by 180◦, call this τ ′. By Theorem 7,
the lift of the shortest path is contained in F3[P ]-Star. Indeed it is
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contained in τ ∪ τ ′. (Any path connecting p to q can be reflected into
τ ∪ τ ′ and then shortened.)

Figure 5

We will now show that the lift of α based at P is contained in τ .

Theorem 8. Let p and q be on distinct faces of T , and let α be the
shortest path between p and q. Let P be a point in the tiled plane
corresponding to p. Suppose τ is the region described in the cutting
strategy. Then the lift of α based at P , α∗, is contained in τ .

Proof. Without loss of generality, suppose that p is on f1 and q is on f3.
Let p, q, P, τ, α, and α∗ be defined as in the statement of the theorem.
Let V be the center vertex of F3[P ]-Star. Let m be the line perpendic-
ular to PV through V . From Theorem 7 we know that α∗ is contained
in Fi[P ]-Star. Let Q1, Q2, Q3 be the points in τ corresponding to q
and let Q′1, Q

′
2, Q

′
3 be the points in τ ′ corresponding to q as in Figure

6. (In the case that there are four points in τ corresponding to q, two
are common to both τ and τ ′. We can arbitrarily place one of theses
points in the group Q1, Q2, Q3 and the other point in Q′1, Q

′
2, Q

′
3.) We

will now show that PQi ≤ PQ′i and PQi < PQ′i if Qi /∈ m. It will
follow that α∗ is contained in τ .
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Figure 6

Case 1: Let i = 1. If Q1 ∈ m, then PQ1 = PQ′1. Otherwise, construct
Q1Q′1 and note that the midpoint is V . Construct the perpen-
dicular bisector, k to Q1Q′1. Let W be a point on m that is on
the Q3 side of V and let A be a point on k on the Q3 side of V .
Observe that P and Q1 are on the same side of m. See Figure
7. It follows from the cutting strategy that m∠PV Q1 ≤ 90◦.
Also m∠PV Q1 = m∠AVW . But m∠PVW = 90◦ and so k
only separates P and Q1 if m∠AVW > 90◦ which is not the
case. Therefore, P and Q1 are on the same side of k. Hence,
PQ1 < PQ′1

Case 2: Let i = 2. Construct Q2Q′2 and note that the midpoint is V .
Construct the perpendicular bisector, k2 to Q2Q′2. Since P is
on the Q2 side of k2, PQ2 < PQ′2.

Case 3: Let i = 3. This is the same argument as in Case 1.

�
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Figure 7

The following Lemma will help distinguish which of the three re-
maining options realizes the shortest segment connecting p and q.

Lemma 9. The perpendicular bisectors of Q1Q2, Q2Q3, and Q1Q3 meet
at a common point.

Proof. Let n1 be the perpendicular bisector of Q1Q2, n2 be the per-
pendicular bisector of Q2Q3, and n3 be the perpendicular bisector of
Q1Q3. Let J be the point of intersection of n1 and n2. Since n1 is
the perpendicular bisector of Q1Q2 and J is on n1, Q1J = Q2J . Since
n2 is the perpendicular bisector of Q2Q3 and J is on n2, Q2J = Q3J .
Then Q1J = Q3J . Thus J is on the perpendicular bisector of Q1Q3.
Thus the perpendicular bisectors of Q1Q2, Q2Q3, and Q1Q3 meet at a
common point, J . �

In order to complete the proof of Theorem 10, we introduce necessary
points: Let M1 be the midpoint of Q1Q2, M2 be the midpoint of Q2Q3,
and M3 be the midpoint of Q1Q3. Let N3 be a point on n3 so that N3

lies in the exterior of ∠M1PM2. Let τ1, τ2, τ3 be regions of τ where τ1

is the region cut by ∠M1JN3, τ2 is the region cut by ∠M1JM2, and τ3

is the region cut by ∠M2JN3. (See Figure 8.)
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Figure 8

There are three possible shortest paths, PQ1, PQ2, and PQ3. The
location of P and its relationship to the perpendicular bisectors n1, n2

and n3 determine the shortest path. The proof follows.

Theorem 10. If P is in τi, then PQi ≤ PQj for j 6= i.

Proof. If P is in τ1 then its on the Q1 side of n1 and n2, and PQ1 is the
shortest path. If P is in τ2 then it is on the Q2 side of n1 and n2, and
PQ2 is the shortest path. If P is in τ3 then it is on the Q3 side of n1

and n2, and PQ3 is the shortest path. Thus PQi ≤ PQj for j 6= i. �

5. Applications

Gilbert and Pollack define a Steiner minimal as the tree which in-
terconnects any number of given points in the plane using the shortest
possible total length. In this paper, we have solved the 2-point problem
on a regular tetrahedron.

Melzak’s algorithm gives a solution to the n point problem in the
plane. In the plane, the 3-point problem breaks down into 2-point
problems, and the n point problem breaks down into a series of 3-point
problems [3]. This paper gives an essential step to solving the n-point
problem in general on the regular tetrahedron.
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