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Abstract. We will consider the Steiner Problem on a flat rectangular torus.

This paper will focus on the three-point case.

1. Introduction

The Steiner problem, named after Jakob Steiner (1796-1863), is the problem of
connecting a given (finite) set of points with the least-length path network. There
is an algorithm, named after Zdzislaw Melzak, that will yield the minimizer for any
given finite set of points [2]. It has been shown that the minimizer must consist of
line segments, each of which must have endpoints in the given set of fixed points,
or in an additional set of Steiner points. With a set of n fixed points it has been
shown that there can be no more than n− 2 Steiner points. At each Steiner point
exactly 3 edges connect, forming angles of 120◦ [4], [5].

This problem has also been considered in other surfaces, such as the hyperbolic
plane, which the author has worked on previously [1]. It has been shown that in
surfaces of constant nonpositive curvature the same results hold—that a minimizer
must consist of geodesics and when these geodesics meet at a Steiner point they
need to form 120◦ angles.

This paper will consider the Steiner problem on the flat torus, which can be
thought of as the space obtained from the rectangle R = [0, a]× [0, b] by identifying
opposing edges.

2. Definitions and Notation

There are several terms we will be using in this paper that we define here for the
reference of the reader.

Definition 2.1. If f : X → Y is a continuous surjective map then an open set
U ⊂ Y is said to be evenly covered by f if f−1(U) is a collection of disjoint open
sets, each of which is homeomorphic to U . f is a covering map if for every point
y ∈ Y there is a neighborhood of y that is evenly covered by f . If f is a covering
map then we say that X is a covering space for Y . [3, p. 336]

Here we give a formal definition for the flat torus. Given l, w > 0, let Z2 act
on R2 by (1, 0) · (x, y) = (x + l, y) and (0, 1) · (x, y) = (x, y + w). Then we define
T (l, w) = R2/Z2 to be the orbit space under this action. In this paper T will be
understood to mean T (l, w). Note that the map p : R2 → T is a covering map.

Definition 2.2. Suppose f : X → Y is a map. If g : Z → Y is a continuous
function, a lifting of g is a map g̃ : Z → X such that f ◦ g̃ = g. [3, p. 342]
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Liftings are most useful when f is a covering map. We will use the following
fact about liftings, but the proof will be omitted since it is beyond the scope of the
paper.

Lemma 2.1. Let p : E → B be a covering map, let p(e0) = b0. Any path f :
[0, 1] → B beginning at b0 has a unique lifting to a path f̃ : [0, 1] → E beginning at
e0. [3, p. 342]

This result will be important when we consider path networks on the torus,
since we will lift them to the covering space R2. We say that R is a fundamental
domain if it is a lifting of the identity i : T → T , that is if f(R) = T and f |R is
a homeomorphism. A fundamental domain may not be rectangular; however, in
this paper we will only discuss rectangular fundamental domains, since they are
very simple and make calculations easy. We will also assume that for any such
fundamental domain, one edge is parallel to the x-axis and the other parallel to the
y-axis.

The following terms relate specifically to the Steiner problem. Let A be a set
of n points on a surface. Then a tree is a path network connecting the points of
A that contains no loops. The minimal spanning tree on A is the tree of minimal
length where only paths with endpoints in A are allowed, (e.g., for three points,
the minimal spanning tree would be tree connecting the two shorter sides of the
triangle).

A Steiner tree is a locally minimal tree—one that consists of geodesics which
are allowed to have endpoints not in A, but all such endpoints meet exactly three
paths and the three angles formed are exactly 120◦. These points are called Steiner
points and it has been shown that there can be no more than n− 2. A full Steiner
tree is a Steiner tree with exactly n − 2 Steiner points and a degenerate Steiner
tree is a Steiner tree that is not full. The Steiner minimal tree is the minimal path
network over all possibilities. In the Euclidean plane, it has been shown that when
a full Steiner tree exists it is the Steiner minimal tree.

If 4 is a triangle then we define SMT(4) to be the Steiner minimal tree on the
vertices of 4 and MST(4) to be the union of the two shorter sides of 4, which
is the minimal spanning tree. When 4 is understood, we will just use SMT and
MST.

The following, while valid for the Steiner problem on any surface of zero curva-
ture, will be particularly useful in our arguments about the torus. If A and B are
two points we define the lune about them as follows: construct both equilateral
triangles on AB and circumscribe circles about them. The short arc of each circle
with endpoints A and B will form the boundary of the lune. It has the special
property that for any point C on that boundary ∠ACB = 120◦ and for any point
C in the interior, ∠ACB > 120◦. Now we draw the rays tangent to these circles
at A and B and they have the property that for any point C on one of these lines,
∠BAC = 120◦ or ∠ABC = 120◦, depending on the ray chosen. The lune will be
the arcs described, together with the interior. The region bounded by the lune and
its tangent rays will be the Steiner region, since for all points C in this region there
is a full Steiner tree for 4ABC. The region bounded only by the tangent rays will
be called the degenerate region since for any point C in it, the minimal tree for
4ABC is degenerate. We note that the lune is also a degenerate region, but it is
of a different nature.
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Figure 1. For fixed A and B, Full Steiner Trees exist when C
is in the Steiner regions. The Lune and Degenerate regions yield
only degenerate trees.

Another object that will be useful in this discussion is the notion of a curve
based on two points A,B with the property that for any point C on that curve,
SMT(ABC) is constant. We will call this curve, together with its bounded interior,
a Steiner neighborhood. Its construction is fairly complicated, and counterintu-
itively we first define a large neighborhood and then a small one. Let A and B
be points in the Euclidean plane. Then, for a given r ≥ 1

2
√

3
AB we define the

Steiner neighborhood of radius r about AB as follows: Construct the standard Eu-
clidean neighborhoods N(A, r) and N(B, r). Then define N1 = ∂N(A, r) and
N2 = ∂N(B, r). Construct the equilateral points E1 and E2 of A and B. Draw
circles C1 and C2 centered at E1 and E2, respectively, of radius AB + r. We note
that each of C1 and C2 intersects each of N1 and N2 at exactly one point. Let
p1 = C1 ∩N1, p2 = C2 ∩N1, p3 = C2 ∩N2, andp4 = C1 ∩N2. Then we construct
the boundary of the Steiner neighborhood by taking the arc of N1 from p1 to p2,
in the counterclockwise direction, together with the arc of C2 from p2 to p3 and the
arc of N2 from p3 to p4, and finally the arc of C1 from p4 to p1. We note that this
curve has the desired property.

Now, the reason we left out Steiner neighborhoods of radius 0 < r < 1
2
√

3
AB

is that every tree in the lune is degenerate, so any Steiner neighborhood whose
boundary intersects the lune must be modified. We note that for any point C in
the lune, SMT(ABC) is the union of the segments AC and BC. Therefore, the
curve along which any point C yields a constant value for AC + BC is an ellipse
with A and B as the foci. Therefore, for r < 1

2
√

3
AB, let E be the ellipse with

foci A and B so that for any point C ∈ E , AC + BC = AB + r, and we construct
N1,N2,C1, and C2 as above. We note that E intersects C1 in two points along the
arc from p4 to p1, call these points p5 and p6. Similarly, E intersects C2 in two
points between p2 and p3, so we call these points p7 and p8. Then the boundary of
this Steiner neighborhood is similar to that of the above, but replace the arc of C1

from p5 to p6 by the arc of E from p5 to p6, and similarly the arc of C2 from p7 to
p8 by the arc of E from p7 to p8.

A B

Figure 2. An example of a Steiner neighborhood around the
points A,B.
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3. Existence and Non-Uniqueness of Minimizer

The Steiner problem on the Euclidean plane is well-understood and it is well-
known that there is a unique minimizer for any given finite set of points. Existence
on the torus follows from existence in the Euclidean case. That is, supposing A is
a set of points in T and Ã is a set of liftings of those points then there is a unique
minimizer γ for the points in Ã. Let l be the length of γ. Then the minimizer for
A has length at most l. Therefore, any closed ball of radius l centered at a point
in A must contain the minimizer.

Here we will note an example that shows that on the flat torus, a minimizer might
not be unique. Consider the points A = (0, 0), B = (0, 1

3 ), C = (0, 2
3 ) ∈ T (1, 1). It

is obvious that this has no full Steiner tree, since the angle at each vertex of 4ABC
is 180◦. We also note that AB = BC = AC, so any of the three minimal spanning
trees gives a minimizer. (It is noted that this is impossible in the Euclidean plane,
for the only case where AB = BC = AC is when 4ABC is equilateral, in which
case there is a full Steiner tree that is the unique minimizer.)

The reason this problem is more difficult than the Steiner Problem in the Eu-
clidean plane is that there are an infinite number of liftings of each point from the
torus to the plane, and therefore an infinite number of combinations of points, some
having full Steiner trees, and some being degenerate. Therefore, we consider the
following results that limit the number of combinations we must consider.

Since there are already ways of solving this problem on the Euclidean plane, the
Steiner problem on the torus is really just that of picking the best combination
of liftings of the points a, b, c in the torus. Therefore, we give a definition for the
notion of a “winner.” In general, if the points A, B, and C are liftings of a, b, c such
that SMT(ABC) ≤ SMT(A′B′C ′) for all other liftings A′, B′, and C ′, then ABC
is a winning combination and these points are called winners. If, for a fixed lifting
A of a, the liftings B and C of b and c form a smaller SMT with A than any other
combination of translates of B and C then they are said to be winners relative to
A. Similarly, if for the fixed points A and B, the point C forms the shortest SMT
among all of its translates then it is said to be the winner relative to A,B.

4. Box Theorem for the Three-Point Problem

Here we discuss the Steiner Problem with three fixed points in the torus.

Theorem 4.1 (“Don’t go outside the box” theorem). Let p : R2 → T be the
standard covering map of T . Also, let a, b, c ∈ T be three distinct points. Then there
is a Steiner minimal tree on a, b, c with a lifting that is contained in a rectangular
fundamental domain.

Proof. We prove this by contradiction. First we show the weaker result that every
lifting must be in a closed fundamental domain. Suppose γ is a lifting that is not
contained in any closed fundamental domain. Let A = (x1, y1), B = (x2, y2), C =
(x3, y3) be the liftings of A,B,C so that A,B,C ∈ γ. Define

mx = min{x1, x2, x3} Mx = max{x1, x2, x3}
my = min{y1, y2, y3} My = max{y1, y2, y3}.

Since γ does not lie in one closed rectangular fundamental domain, it follows that
either Mx −mx > l or My −my > w. Without loss of generality, we assume the
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Figure 3. A sketch of the proof of this theorem. Note that CB′ < CB.

former case. We also assume that mx = x1 and Mx = x2 (that A is the “leftmost”
point and B is the “rightmost” point).

Now we define the point P = (x4, y4) as follows. If γ is a full Steiner tree, let
P be the Steiner point of γ. Otherwise, let P = C. Now we see that x2 − x1 =
(x2 − x4) + (x4 − x1) > l, therefore either x4 − x1 > l

2 or x2 − x4 > l
2 . Again,

without loss of generality, we assume the latter case. Here we note that there is a
lifting B′ = (x2 − l, y2) of the point B and that |x4 − (x2 − l)| < |x4 − x2| since
x2 − x4 > l

2 . Therefore, d(P,B′) < d(P,B), so the tree γ′ = (γ − PB) ∪ PB′ is
shorter than γ, contradicting the assumption that γ was minimal. Now we see that
in the case that γ lies in one closed fundamental domain but not in the fundamental
domain itself, d(P,B′) = d(P,B), so γ and γ′ have the same length γ′ is a tree that
has the desired properties. �

The reason this theorem is so useful is that it vastly limits the number of cases
that we need to consider. If we create a rectangle R = [x, x+2l)× [y, y+2w), which
would contain four fundamental domains, the minimizer must have a lift into R.
Furthermore, since any translate of a fundamental domain is also a fundamental
domain, we may assume that one of the three points has a lifting that is exactly in
the center of R, we really only need to check 16 cases. The other reason this result
is useful is that it has a nice generalization to a higher number of points that will
be shown later.

5. Elimination of Competitors Using the Steiner Ratio

Another result that will be even more useful is a simple application of the Steiner
ratio. The Steiner ratio is defined to be r = inf Length(SMT)

Length(MST) , where the infimum
is taken over all finite sets of at least two points. It is conjectured that this value
is

√
3

2 . Indeed, that conjecture has been proven in the case where only three-point
sets are considered.1 We will use this result to further limit the number of points
we need to consider.

Let a, b, c ∈ T and assume that O = (0, 0) is a lift of the point a. Let B1,
B2, B3, B4, C1, C2, C3, C4 be the liftings of b and c that lie in the rectangle
[−l, l) × [−w,w) so that Bi and Ci lie in the ith quadrant. Of all 16 possible
combinations of O,Bi, Cj , let OBmCn be the triplet that has the shortest minimal
spanning tree. Then this combination is said to yield the minimal MST. Denote the
length of this tree by ρ. Now it follows from the Steiner ratio that any combination
of points Bi, Cj that, together with O, has a minimal spanning tree of length 2√

3
ρ,

1insert citation here
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that combination cannot generate the minimizing tree. It is difficult in general
to say exactly how many combinations this algorithm will rule out, but we will
consider an interesting result.

Assume the fundamental domain is a square of unit length. Let B1 = (0, 1
2 ),

C1 = ( 1
2 , 1

4 ). We claim that of all possible points B̃, C̃ ∈ [0, 1) × [0, 1) these two,
together with the origin, have the largest possible minimal spanning tree in T (1, 1).
The algorithm we have just described reduces the number of possiblities from 16 to
9. The main reason this algorithm is not better for this configuration is that many
of the combinations generate minimal spanning trees with equal lengths. Now that
we have seen a case where this algorithm does not do as well as we could hope, we
state a lemma that will let us know when we have a winner.

Lemma 5.1. Let a, b, c ∈ T , and let A,B,C be lifts of those points repsectively.
If AB,AC,BC <

√
3

4 m (where m = min{l, w}) then SMT(ABC) is a lifting of the
minimizer for the points a, b, c in the torus.

Proof. First we assume that A = (0, 0). We note that Length
(
MST(ABC)

)
≤

AB+AC <
√

3
2 m and that for any translate B′ of B or C ′ of C, we have AB′, AC ′ ≥

(1 −
√

3
4 )m. Since 1 −

√
3

4 > 1
2 , we see that 2√

3
Length

(
MST(ABC)

)
< m <

AB′ + AC ′. Therefore, any triangle 4AB′C ′ that has AB′ ∪ AC ′ as its minimal
spanning tree cannot be the minimzer, by the Steiner ratio.

The cases we have left are when MST(AB′C ′) is either AB′∪B′C ′ or AC ′∪B′C ′.
Without loss of generality, we may assume the former. Now we note that since
BC <

√
3

4 m, for any translate of B or C we have B′C ′ ≥ BC. Therefore,

Length
(
MST(AB′C ′)

)
≥ AB′ + BC > 1−

√
3

4
+ BC

and

Length
(
MST(ABC)

)
<

√
3

4
+ BC,

so
2√
3

Length
(
MST(ABC)

)
<

1
2

+
2√
3
BC

and since BC <
√

3
4 , we have

2−
√

3√
3

BC <
2−

√
3

4

(
2√
3
− 1)BC <

1
2
−
√

3
4

1
2

+
2√
3
BC < 1−

√
3

4
+ BC

2√
3
l(MST(ABC)) < l

(
MST(AB′C ′)

)
Therefore, by the Steiner ratio, it follows that AB′C ′ cannot yield the minimizer,

so it must be the case that SMT(ABC) is the minimizer for A,B,C. �
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6. Linking SMT and MST

Let A,B, and C be liftings of a, b, and c in T that yield the minimal MST.
Although in many cases, this combination also yields the minimal SMT, and there-
fore the minimizer for the Steiner problem, it is not true in all cases. We have used
Mathematica to find examples where this is not the case, for T (1, 1). Although we
do not have a proof, we believe that there are such examples for any torus T (l, w).

One result we have to determine when the minimal MST coincides with the
minimal SMT is in T (1, 1) and in the case where the points A and B (labeled
to be the vertices of the longest edge of the MST) lie on a vertical or horizontal
line. Without loss of generality, we will assume that this is a horizontal line. Then
given a point C defining a Steiner neibhorhood around A and B, we define r to be
the radius of this neighborhood. Then the height of the Steiner neighborhood is
2(1−

√
3

2 )AB +2r and if this value is less than 1 then we are guaranteed that there
are no translates of C in the Steiner neighborhood, therefore indicating that among
all translates of C, that one is best for the chosen pair A,B. Solving for r we have
that if r < 1

2 − (1 −
√

3
2 )AB then C will be the winner relative to A,B. Now we

note, since A and B lie on the same horizontal line, that AB ≤ 2
3 therefore,

1
2
− (1−

√
3

2
)AB ≥ 1

2
− (1−

√
3

2
)
2
3

> .41,

so if r < .41 then C is the winner relative to A,B. We note that this is the case
for most possible points C.

Now we try a slightly more general result, also in T (1, 1), that allows for no
restriction on the orientation of AB. In this case we wish to calculate the diameter of
the Steiner neighborhood, excluding the degenerate regions. We are not concerned
with the degenerate regions because we have already assumed that there are no
translates of C in those regions by choosing the minimal MST. We let s be the
diameter of this region and use the law of cosines to see that s2 = 4r2 + (AB)2 +
2r(AB). With the same reasoning as before, we wish to bound s above by 1, so we
have s < 1, equivalently s2 < 1, so solving for r we get

r <
−2(AB) +

√
16− 12(AB)2

8

guarantees C to be a winner. This time we see that AB ≤
√

2
2 , and therefore r < .21

would guarantee C to be a winner. This result is much weaker, but it is concievable
that there are other arguments that may be found to help strengthen it.
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