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Abstract. Let Γ be a congruence subgroup of level N in GLn(Z). Let P be

a maximal Q-parabolic subgroup of GLn /Q, with unipotent radical U , and
let Q = (P ∩ Γ)/(U ∩ Γ). Let p > dimQ(U(Q)) + 1 be a prime number that

does not divide N . Let M be a (U, p)-admissible Γ-module. Consider the
Lyndon-Hochschild-Serre spectral sequence arising from the exact sequence

1 → U ∩ Γ → P ∩ Γ → Q → 1, which abuts to H∗(P ∩ Γ,M). We show that

if M is a trivial U ∩ Γ-module, then certain classes in the E2 page survive
to E∞. We use this to obtain information about classes in H∗(P ∩ Γ,M)

even if M is not a trivial U ∩ Γ-module. This information will be used in

future work to prove a Serre-type conjecture for sums of two irreducible Galois
representations.

1. Introduction

Fix a prime number p and an algebraic closure F of the prime field of character-
istic p. In this note we study the homology of maximal parabolic subgroups G of
congruence subgroups of GLn(Z) with coefficients in certain F-vector spaces. This
involves a Lyndon-Hochschild-Serre (from now on “LHS”) spectral sequence that
abuts to the homology of G.

We use bold letters to denote algebraic groups. If J is a group and V is a J-
module, then V J denotes the fixed points of V under J . If ε is a character of a
group G, let Fε denote the one-dimensional space on which G acts via ε.

Definition 1.1. Let A1, . . . , Ak be positive integers with A1 + · · · + Ak = n. A
parabolic subgroup of GLn or of GLn(Q) is called standard of type (A1, . . . , Ak) if
it consists of lower block diagonal matrices with blocks of sizes A1, . . . , Ak. If a par-
abolic subgroup is conjugate to a standard parabolic subgroup of type (A1, . . . , Ak),
then we say it also has type (A1, . . . , Ak).

Every parabolic subgroup of GLn or of GLn(Q) is conjugate to a standard
parabolic subgroup by matrix in GLn(Z).

Definition 1.2. Let P be a parabolic subgroup of GLn(Q) with unipotent radical
U . Let Γ be a subgroup of GLn(Z), and let G = Γ ∩ P . A (U, p)-admissible G-
module M is a G-module of the form V ⊗ Fε where V is an irreducible module
for FGLn(Z/p) on which G acts via its reduction modulo p, and ε : G → F× is a
character that is trivial on G ∩ U .

A character ε as in this definition is called a nebentype character. For example,
let e : Z/N → F× be a character. Let Γ = Γ0(N) be the subgroup of GLn(Z)
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whose first row (with the exception of the first entry) is congruent to 0 modulo N .
For γ ∈ Γ0(N), let ε(γ) = e(γ11), and let P be any maximal Q-parabolic subgroup.
Let P0 be the standard parabolic subgroup conjugate to P. Then ε restricted to
G = Γ0(N)∩P is a nebentype character. If φ is an automorphism of GLn(Z), and
φ(P) = P0, then ε ◦ φ−1 is a nebentype character on φ(Γ0(N)) ∩P0.

Given a prime p, an n-tuple (a1, . . . , an) of integers is p-restricted if 0 ≤ an <
p− 1, and 0 ≤ ai− ai+1 < p for 1 ≤ i < n. Irreducible modules for FGLn(Z/p) are
classified by their highest weights, which are necessarily p-restricted. We use the
notation F (a1, . . . , an) for the irreducible module with highest weight (a1, . . . , an).
In this paper, we will assume throughout that V = F (a1, . . . , an).

Definition 1.3. Let N be a positive integer. A subgroup Γ of GLn(Z) is determined
by congruence conditions modulo N if it is the full preimage of a subgroup of
GLn(Z/N) under the reduction modulo N map. Note that this implies that Γ
contains the principal congruence subgroup modulo N .

Our main theorem has two parts.

Theorem 1.4. Let Γ be a subgroup of GLn(Z) determined by congruence conditions
modulo an integer N , and let p be a prime that does not divide N . Let P = LU be
a maximal Q-parabolic subgroup of GLn, where U is its unipotent radical and L is
a Levi-factor. Let G = P∩Γ, H = U∩Γ, Q = G/H. Let M be a (U, p)-admissible
G-module.

(a) For any m, the natural map Hm(G,MH)→ Hm(G,M) is injective.

(b) If M ′ is any submodule of M , consider the LHS spectral sequence E(M ′)
with coefficients in M ′ for the exact sequence

1→ H → G→ Q→ 1.

Let d be the rank of the free abelian group H, and assume that p > d+ 1. Suppose
there is a nonzero z ∈ E2

jd(M
H) = Hj(Q,Hd(H,M

H)) for some j. Then z survives

to a nonzero element of E∞jd (MH).

Remark 1.5. The exact sequence of groups mentioned in the theorem does not
split in general, which increases the difficulty of the proof of the theorem. Also, it
is very unlikely that the LHS spectral sequence in the theorem degenerates, even
though if M is replaced by a Q-vector space it is known that the resulting LHS
spectral sequence does degenerate at E2 (see [7, Theorem 2.7]).

In [1], we use Theorem 1.4 to study the following question. Let GQ be the
absolute Galois group of Q. A Galois representation is a continuous homomorphism
ρ : GQ → GLn(k) for some topological field k. We say that ρ is odd if ρ applied
to complex conjugation has eigenvalues ±(1,−1, 1,−1, . . . ). Given an odd Galois
representation ρ : GQ → GLn(F), does there exist a level N and an irreducible
F[Γ0(N)]-module M , and a Hecke eigenclass z ∈ H∗(Γ0(N),M) with ρ attached?

In [1], we show that the answer is “yes” if ρ has squarefree Serre conductor and
is the direct sum of two irreducible representations, each of smaller dimension, and
each attached to Hecke eigenclasses. That paper depends on the main results of
this paper. We first find an element in E2

jd(M
H) that has ρ attached to it. We

use (b) to show that there is an element in Hj+d(G,M
H) that has ρ attached. We

then use (a) to get an element in Hj+d(G,M) with ρ attached.
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Here is a sketch of the proof of Theorem 1.4. We consider a certain semigroup
Σ of “semi-scalar” matrices. These are matrices in P(Q) whose coefficients are
algebraic integers prime to p and which are in the center of a Levi component of
P. They act on M through their reduction modulo a prime above p. We also need
another semigroup of semi-scalar matrices:

Σ(Z, N) = {x ∈ Σ ∩Mn(Z) | x ≡ I mod N}.
The semigroup Σ acts only on M , while Σ(Z, N) acts on both a resolution of H
and on M .

For (a), in section 3 we consider a filtration of M by G-modules such that each
quotient is a trivial H-module. The spectral sequence arising from this filtration
has a semisimple action of Σ on it. Tracking the eigencharacters of Σ on the various
terms of this spectral sequence provides a proof of the injection.

We prove (b) in section 4. Because d is the homological dimension of H, z
vanishes under all the higher differentials. We show that none of the images of
z in subsequent pages of the spectral sequence can be in the image of a higher
differential, and that implies (b).

We are able to prove this for MH -coefficients because we have good control on
Hj(G,M

H) as a Q-module and as a Σ(Z, N)-module. (We do not have this control
if we replace MH with M .) This gives a semisimple action of Σ(Z, N) on all pages
of the LHS spectral sequence, commuting with the differentials. We are able to
separate the eigenalues of Σ(Z, N) on z from those of anything that could possibly
map onto it under a higher differential.

All modules in this paper are right-modules, unless otherwise stated.

2. The LHS spectral sequence

Suppose we have an exact sequence of groups, with abelian kernel:

1→ H → G→ Q→ 1.

This gives an action of Q on H, whether or not the sequence is split, by setting
h • q = g−1hg for any lift g of q to G. The action does not depend on the lift. We
call this the (natural) Q-action on H.

Fix a ring k. Let F be a resolution of k by free kG-modules (for example the
standard resolution of G) and let Φ be a resolution of k by free kQ-modules (for
example the standard resolution of Q). Let M be a kG-module. Form the double
complex

Cij = Φi ⊗Q (Fj ⊗H M).

Recall that Fj ⊗HM is a Q-module under the diagonal action because Fj ⊗HM =
(Fj ⊗k M)H . Starting with this double complex, and taking the homology first in
the j-direction and then in the i-direction gives rise to the LHS-spectral sequence:

E2
ij = Hi(Q,Hj(H,M)) =⇒ Hi+j(G,M).

3. Injectivity

Theorem 3.1. Let Γ be a subgroup of GLn(Z) determined by congruence conditions
modulo N . Assume that p is prime to N . Let P = LU be a maximal Q-parabolic
subgroup of the algebraic Q-group GLn. Let G = P∩Γ, H = U∩Γ, Q = G/H. Let
M be a (U, p)-admissible module. Then the map induced by inclusion ι : MH →M

ι∗ : Hj(G,M
H)→ Hj(G,M)
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is injective for any j.

The proof of this theorem will take up the rest of this section. Suppose that P
has type (A,B). Conjugating everything by an element of GLn(Z), we may assume
that P = P0. We will continue this assumption throughout the paper.

Throughout this section, we define Γ, G, H, and Q, as in Theorem 3.1.

Lemma 3.2. (1) The inclusion MH →M is G-equivariant.
(2) If M ′ is a G-module on which H acts trivially, then Hd(H,M

′) is naturally
isomorphic as G-module to ∧dH ⊗F M

′, where G acts on H via conjugation.

Proof. (1) This is clear since H is normal in G.
(2) The Pontryagin product is natural [4, pg. 122], so Hd(H,M

′) is naturally
isomorphic to ∧dH ⊗F M

′. Since G acts on H by conjugation, and conjugation is
an automorphism of H, this is an isomorphism of G-modules. �

We now introduce some notation for irreducible modules. Let F (a1, . . . , an)
denote the unique irreducible FGLn(F)-module with highest weight (a1, . . . , an).
We also let F (a1, . . . , aA; b1, . . . , bB) denote the irreducible F(GLA(F)×GLB(F))-
module F (a1, . . . , aA) ⊗F F (b1, . . . , bB). We use the same notation to denote the
restriction of this module to any subgroup of GLA(F) × GLB(F). In particular,
P(Z)/U(Z) is isomorphic to GLA(Z)×GLB(Z), so that we can consider G/H mod-
ulo p to be a subgroup of GLA(F)×GLB(F) and thus to act on F (a1, . . . , aA; b1, . . . , bB).

Lemma 3.3. There are natural isomorphisms of G-modules

Hd(H,M) ∼= Hd(H,M
H)

∼= ∧dH ⊗kMH

∼= F (a1 +B, . . . , aA +B; aA+1 −A, . . . , an −A)ε.

Proof. This follows immediately from [2, Theorem 9.1] and its proof. �

In order to show that ι∗ : Hj(G,M
H) → Hj(G,M) is injective, we create a

filtration of the G-module M whose associated graded module is a trivial H-module.
Examining the spectral sequence associated to this module, we find that E1

0q =

Hq(G,M
H). Using the action of semiscalar matrices on this module, we show that

E1
0q is equal to E∞0q , which is the image of Hq(G,M

H) in Hq(G,M), so the map ι∗
is injective.

Lemma 3.4. MH = MU(F).

Proof. Γ is defined by congruence conditions modulo N , so its reduction modulo p
contains SLn(Z/p). Therefore, the reduction of H = Γ ∩U(Z) modulo p equals all
of U(Z/p). Thus MH = MU(Z/p). It follows from [6, Corollary p. 51] (at the end
of section 10 of chapter 5), that MU(Z/p) = MU(F). �

By the definition of M , GLn(F) acts on M . Choose a prime p over p in the ring
of integers O of Q, and fix an isomorphism O/p → F. Let Op be the localization
of O at p. We obtain an action of GLn(Op) on M by first reducing modulo p and
then applying the GLn(F) action on M .

Definition 3.5. Define the group Σ of semi-scalar matrices in GLn(Op) by

Σ = {sα = diag(αIA, IB) : α ∈ O×p }.

Let Σ be the reduction of Σ modulo p.
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Lemma 3.6. Let s ∈ Σ and x ∈ P(Op). Then s−1xs = hx for some h ∈ U(Op).

Proof. [
α−1IA 0

0 IB

] [
a 0
b c

] [
αIA 0

0 IB

]
=

[
IA 0
u IB

] [
a 0
b c

]
where u = (bα− b)a−1. Since a is invertible in GLA(Op), the lemma follows. �

Let sα ∈ Σ be the reduction of sα modulo p, so sα acts on M via sα. Since Σ con-
sists of elements whose orders are prime to p, its action on M can be diagonalized.
In fact, we can diagonalize M with respect to the whole diagonal torus in GLn(Op),
and the eigencharacters that appear are the weights of the representation.

Lemma 3.7. (1) MH is an irreducible L(F)-module isomorphic to

F (a1, . . . , aA; aA+1, . . . , an).

(2) The weights of the diagonal matrices on M/MH are all of the form

(b1, . . . , bn)

such that 0 ≤ b1 + · · ·+ bA < a1 + · · ·+ aA.

Proof. We apply [6, pp. 51-2] to M = F (a1, . . . , an). Assertion (1) is [6, Corollary,
p. 51]. Let λ = (a1, . . . , an). Assertion (2) follows from the statement in [6, pg.
50] which (rewritten in our notation and taking the corollary on page 51 of [6] into
account) says that M = MH ⊕M∗ where M∗ is the sum of all the weight spaces
with weights µ of the form

µ = λ− ξ
where ξ is a weight that does not lie in ZΘ+. Here Θ+ denotes the set of positive
roots of L. For (c1, . . . , cn) to lie in ZΘ+, it must be an integral linear combination
of ei−ej , where i, j are either both in {1, . . . , A} or both in {A+1, . . . , n}. Therefore,
in the expression of ξ as a linear combination of the basis {ek − ek+1}, the basis
element eA − eA+1 must appear with a nonzero coefficient.

Now we know (cf. [3, proof of Lemma 6.1 (2)]) that in fact the coefficients in
ξ are all non-negative. So we are subtracting off eA − eA+1 a positive number of
times to get µ. This gives the upper bound. The lower bound follows because any
irreducible F[GLn(F)]-module is isomorphic to a subquotient of a tensor product
of fundamental irreducible representations of GLn. �

Corollary 3.8. (1) For any α ∈ O×p , the eigenvalues of sα on MH are all equal to

αa1+···+aA

while the eigenvalues of sα on M/MH are equal to

αb1+···+bA

for various b1, . . . , bA, all of which satisfy 0 ≤ b1 + · · ·+ bA < a1 + · · ·+ aA.
(2) The eigencharacters of Σ on MH are pairwise distinct from the eigenchar-

acters of Σ on M/MH .

Proof. (1) follows immediately from the preceding lemma.
(2) Suppose that a1 + · · · + aA > b1 + · · · + bA as integers. Choose α such

that α has order in F× greater than (a1 + · · · + aA) − (b1 + · · · + bA). Then
αa1+···+aA 6= αb1+···+bA . This proves that the eigencharacters of Σ on MH are
pairwise distinct from the eigencharacters of Σ on M/MH . �



THE LYNDON-HOCHSCHILD-SERRE SPECTRAL SEQUENCE 6

Remark 3.9. In the proof of the theorem we used the fact that the coefficients of
ξ in the usual basis are all non-negative. This is asserted in [3, proof of Lemma
6.1 (2)]) without a proof. For completeness, here is a proof: Let λ = (a1, . . . , an).
The irreducible module F (λ) is a subquotient of the dual Weyl module W (λ). The
dual Weyl module is a subquotient of a Z-form of the irreducible GLn(C) module
Y with highest weight λ modulo an admissible lattice.

Since all these modules are sums of weight spaces, it suffices to show that every
weight of Y is obtained from λ by subtracting a linear combination of positive roots
with all non-negative coefficients. This follows from [5, Theorem 31.3(b)].

Definition 3.10. Define the filtration

M0 ⊂M1 ⊂ · · · ⊂Mk = M

by setting M0 = MU(F), M1 = the complete inverse image of (M/MU(F))U(F) in
M , etc. Call this the H-filtration.

Because any F-vector space which is a module for a p-group X has a nontrivial
fixed point set under X, and because M is finite dimensional over F, the filtration
is exhaustive, as intimated by the definition.

The following lemma is clear, because U is normal in P.

Lemma 3.11. The H-filtration is stable under P(F). Its associated graded module
is a trivial U(F)-module.

Lemma 3.12. Let W be a module for P(F) which is trivial as a U(F)-module. Let
Ψ• be a resolution of F by G-modules.

(1) If s ∈ Σ, the map ψ⊗G w 7→ ψ⊗G ws provides a well-defined action of Σ on
Ψ⊗GW which commutes with the differentials and augmentation of Ψ.

(2) This induces an action of Σ on Hi(G,W ) for all i.

Proof. The second statement follows from the first. For the first we must check
that

ψg ⊗G wgs = ψ ⊗G ws
for any g ∈ G. By Lemma 3.6, gs = shg for some h ∈ U(Op). Then U(F) acts
trivially on W and s normalizes U(F), so

ψg ⊗G wgs = ψg ⊗G wshg = ψ ⊗G wsh = ψ ⊗G wshs−1s = ψ ⊗G ws.

The action clearly commutes with the differentials in Ψ. �

We now form a spectral sequence using the filtration of M . We follow [8, Sections
5.4 and 5.5]. Let Ψ• be the given resolution of F by free G-modules. Let A be the
complex defined by Aq = Ψq ⊗G M . The H-filtration of M induces the filtration
F`A = Ψ⊗GM` of A. By [8, Theorem 5.5.1], we obtain a spectral sequence

E1
`q = H`+q(Ψ⊗GM`/M`−1)⇒ H`+q(A) = H`+q(G,M).

In particular, E∞0q = F0Hq(A) = the image of Hq(G,M0) in Hq(G,M).

Because M`/M`−1 is a trivial U(Op)-module, by Lemma 3.12, Σ acts on the E1

page. The differentials of the spectral sequence are induced by the differentials in
Ψ. The Σ-action involves only the second factor of the tensor product, while the
differentials involve only the first factor. Therefore the Σ-action commutes with all
the differentials of the spectral sequence.
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So we have a Σ-action on the spectral sequence and each term is diagonalizable
with respect to this action. If we choose a character c of Σ we can project to the
c-eigenspace, and get a spectral sequence that converges to the c-eigenspace of the
abutment. Let c be the character c(sα) = αa1+···+aA . By Lemma 3.8, the only
terms that have a nonzero projection to this eigenspace are those where ` = 0.
Therefore E1

0q = Hq(Ψ ⊗G M0) = Hq(G,M0) survives intact to E∞0q , which is the
image of Hq(G,M0) in Hq(G,M). In other words, ι∗ is injective. QED.

4. Survival to E∞

We continue the notation from preceding sections, and make the following defi-
nition:

Definition 4.1. Let Σ(Z, N) denote the subsemigroup of Σ consisting of sα for
α ∈ Z ∩ Op with α ≡ 1 (mod N).

For this section, we will choose our projective resolution F to be the standard
resolution of the group generated by G and Σ(Z, N).

Lemma 4.2. For sα ∈ Σ(Z, N) and f ⊗H m ∈ F ⊗H MH , let (f ⊗H m) ∗ sα =
fsα ⊗H msα. Then this gives a well-defined Q-equivariant action of Σ(Z, N) on
F ⊗H MH .

Proof. This is an action, if it is well-defined. We must show that if x ∈ H then

fxsα ⊗H mxsα = fsα ⊗H msα.

If x ∈ H then fxsα ⊗H mxsα = fsαs
−1
α xsα ⊗H msαs

−1
α xsα. But s−1α xsα ∈ H, so

this equals fsα ⊗H msα.
Now we check that this action isQ-equivariant. The action of q ∈ Q on F∗⊗HMH

is determined by lifting q to g ∈ G and then sending f ⊗H m 7→ fg ⊗H mg. Now

(fsα ⊗H msα)g = fsαg ⊗H msαg

whereas

((f ⊗H m)g)sα = fgsα ⊗H mgsα = f(sαg)(sαg)−1(gsα)⊗H m(sαg)(sαg)−1(gsα).

But g−1s−1α gsα ∈ H and hence acts trivially on the tensor product. Indeed, it is
easy to see that that g−1s−1α gsα ∈ U. In addition, it has determinant 1 and integer
entries so it is in GLn(Z). Since Γ is defined by congruence conditions mod N , and
sα is congruent to the identity mod N , we see that g−1s−1α gsα ∈ Γ. �

Now Σ(Z, N) acts on the double complex

C∗q = Φ∗ ⊗Q (Fq ⊗H MH)

via this action on Fq⊗HMH where Σ(Z, N) acts trivially on Φ∗. It commutes with
both differentials, and so gives an action on the spectral sequence

E2
ij = Hi(Q,Hj(H,M)) =⇒ Hi+j(G,M)

of section 2 arising from the double complex. This action has the following prop-
erties.
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Lemma 4.3. Let α be a natural number prime to p, so that sα ∈ Σ(Z, N).
(1) The ∗-action of sα on Hq(H,M

H) = ∧qH⊗MH is the tensor product of the
action on ∧qH induced by h 7→ hα and the usual action of sα on MH .

(2) This action commutes with the Q-action on Hq(H,M
H).

(3) The ∗-action of sα on Hq(H,M
H), and therefore on ⊕rHr(Q,Hq(H,M

H)),
is multiplication by the scalar αq+a1+···+aA .

Proof. (1) By Corollary 3.8(1), as a Σ(Z, N)-module, MH ∼= Fmc for some m,
where c(sα) = (α)a1+···+aA . Without loss of generality we may take m = 1. The
Pontryagin product is natural, so we may take q = 1. If we compute the homology
of H using the resolution F , the ∗-action of sα on the chains induces the natural
action of sα on H1(H,Fc). Here, sα acts by right conjugation on H and on the
coefficients via c.

The action of sα on H is given by the formula[
α−1IA 0

0 IB

] [
IA 0
u IB

] [
αIA 0

0 IB

]
=

[
IA 0
αu IB

]
=

[
IA 0
u IB

]α
.

Translated into homology, which we will write additively, the action of sα on
H1(H,F) is multiplication by α. Hence the action of sα on Hq(H,Fc) is as stated
in the lemma.

(2) The isomorphism H1(H,Fc) → H ⊗ Fc is functorial and therefore it is an
isomorphism of Q-modules. Since the action of sα is just multiplication by a scalar,
it commutes with the Q-action.

(3) Since sα is a semi-scalar matrix, its conjugation action on Q is trivial. So the
action of sα on ⊕rHr(Q,Hq(H,M

H)) is only through its action on Hq(H,M
H).

Hence (3) follows from (1). �

Theorem 4.4. Suppose p > d+1. Let z ∈ E2
jd = Hj(Q,Hd(H,M

H)) be a nonzero
class. Then z persists to a nonzero class in E∞jd .

Proof. Recall that the spectral sequence arises from the double complex

C∗q = Φ∗ ⊗Q (Fq ⊗H MH),

where we have chosen F to be the standard resolution of the group generated by
G and Σ(Z, N). For α ∈ O×p , sα acts on M via its reduction modulo p.

Now suppose z ∈ E2
jd does not survive to E∞. By Lemma 4.3, for sα ∈ Σ(Z, N),

z ∗ sα = αd+a1+···+aAz.

Recall that z is in the kernel of all the higher differentials. So if z ∈ E2
jd does

not survive to E∞, then for some ` ≥ 2, there exists w such that z` = d`(w). Here,
z` is the image of z in the ` page of the spectral sequence, and w is the image of
some W ∈ (E)2j+`,d−`+1 = Hj+`(Q,Hd−`+1(H,M)) in the kernel of d2, . . . , d`−1.

By Lemma 4.3,

W ∗ sα = αd−`+1+a1+···+aAW.

Because the differentials commute with the action of Σ(Z, N),

w ∗ sα = αd−`+1+a1+···+aAw.

On the other hand,

w ∗ sα = αd+a1+···+aAw

since z is the image of w under one of the differentials.
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Choose α so that α generates (Z/p)×. Since w 6= 0, we must have

−`+ 1 ≡ 0 (mod p− 1)

i.e. (p− 1)|(`− 1). But 2 ≤ ` ≤ d+ 1. Therefore p− 1 ≤ `− 1 ≤ d, i.e. p ≤ d+ 1.
This contradicts the hypothesis. �
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