Example: Let $f(x) = x^3 + bx^2 + cx + d$ have roots α_1 , α_2 , and α_3 . Find the polynomial g(x) that has roots $\alpha_1 + \alpha_2$, $\alpha_1 + \alpha_3$, and $\alpha_2 + \alpha_3$.

Solution: Writing

$$f(x) = x^{3} + bx^{2} + cx + d = (x - \alpha_{1})(x - \alpha_{2})(x - \alpha_{3})$$

we find that

$$f(x) = x^3 - \sigma_1 x^2 + \sigma_2 x^2 - \sigma_3$$

where we write σ_i as shorthand for $\sigma_i(\alpha_1, \alpha_2, \alpha_3)$. Hence $b = -\sigma_1$, $c = \sigma_2$ and $d = \sigma_3$.

Now $g(x) = (x - (\alpha_1 + \alpha_2))(x - (\alpha_1 + \alpha_3))(x - (\alpha_2 + \alpha_3))$. Expanding this out, we find that

$$g(x) = x^3 - 2(\alpha_1 + \alpha_2 + \alpha_3)x^2 + (\alpha_1^2 + \alpha_2^2 + \alpha_3^2 + 3\alpha_1\alpha_2 + 3\alpha_1\alpha_3 + 3\alpha_2\alpha_3)x - (\alpha_1^2\alpha_2 + \alpha_1^2\alpha_3 + \alpha_2^2\alpha_3 + \alpha_2^2\alpha_1 + \alpha_3^2\alpha_1 + \alpha_3^2\alpha_2 + 2\alpha_1\alpha_2\alpha_3)$$

We note that the coefficient of the x^2 term is just $-2\sigma_1$, or 2b.

The coefficient of the x term is $\sigma_1^2 - 2\sigma_2 + 3\sigma_2 = \sigma_1^2 + \sigma_2$. (As we showed in class, $\alpha_1^2 + \alpha_2^2 + \alpha_3^2 = \sigma_1^2 - 2\sigma_2$.) Hence, this coefficient is $\sigma_1^2 + \sigma_2 = (-b)^2 + c = b^2 + c$.

Finally, to simplify the constant coefficient, we use the algorithm from class today. Namely, find the leading term of

$$h = \alpha_1^2 \alpha_2 + \alpha_1^2 \alpha_3 + \alpha_2^2 \alpha_3 + \alpha_2^2 \alpha_1 + \alpha_3^2 \alpha_1 + \alpha_3^2 \alpha_2 + 2\alpha_1 \alpha_2 \alpha_3$$

(I have removed the minus sign for convenience) to be $\alpha_1^2 \alpha_2 = \alpha_1^2 \alpha_2^1 \alpha_3^0$. As described in class, the leading term of $\sigma_1^{(2-1)} \sigma_2^{(1-0)} \sigma_3^0$ is also $\alpha_1^2 \alpha_2^1 \alpha_3^0$. Then $h - \sigma_1 \sigma_2$ will have a smaller leading term. Doing the arithmetic (on a computer, of course), we find that

$$h - \sigma_1 \sigma_2 = -\alpha_1 \alpha_2 \alpha_3 = -\sigma_3$$

Hence, $h = \sigma_1 \sigma_2 - \sigma_3 = (-b)c - (-d) = -bc + d.$

Finally,

$$g(x) = x^{3} + 2bx^{2} + (b^{2} + c)x - h$$

= $x^{2} + 2bx^{2} + (b^{2} + c)x + (bc - d).$

To check this, we let $f(x) = (x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x - 6$ have roots 1, 2, 3. The coefficients are b = -6, c = 11, and d = -6. Then

$$g(x) = x^{2} + 2bx^{2} + (b^{2} + c)x + (bc - d)$$

= $x^{3} + 2(-6)x^{2} + ((-6)^{2} + 11)x + ((-6)(11) - (-6))$
= $x^{3} - 12x^{2} + 47x - 60$
= $(x - 3)(x - 4)(x - 5)$

has roots 3 = 1 + 2, 4 = 1 + 3 and 5 = 2 + 3, as desired.