MATH 473 WINTER 2019 HOMEWORK 11

1. Let G be a finite group, and let $\rho: G \to \mathrm{GL}(n,\mathbb{C})$ be an irreducible representation. Prove that if $z \in Z(G)$, then $z\rho$ is a scalar matrix (a scalar multiple of the identity matrix).

Hint: There are two different ways to do this, one uses a corollary from chapter 9, the other uses a proposition from chapter 9.

- 2. Suppose that V is a non-zero $\mathbb{C}G$ -module such that $V = U_1 \oplus U_2$, where $U_1 \cong U_2$, and both U_1 and U_2 are $\mathbb{C}G$ -modules. Prove that there is a $\mathbb{C}G$ -submodule Uof V that is not equal to either U_1 or U_2 , but is isomorphic to both of them.
- 3. Let $G=D_8=\langle a,b:a^4=b^2=e,b^{-1}ab=a^{-1}\rangle.$ (a) Prove that the span of the vectors $1-ia-a^2+ia^3$ and $b-iab-a^2b+ia^3b$ is an irreducible $\mathbb{C}G$ -submodule of $\mathbb{C}G$.
 - (b) Find a second two-dimensional irreducible $\mathbb{C}G$ -submodule of $\mathbb{C}G$.
- 4. Find four nonisomorphic one-dimensional irreducible $\mathbb{C}G$ -submodules of $\mathbb{C}G$ when $G = D_8$. Be sure to prove that each one is actually a submodule and that they are not isomorphic.

Hint: One of them is spanned by

$$(1+b)(1-a+a^2-a^3) = (1-a+a^2-a^3)(1+b).$$