MATH 473 WINTER 2019 HOMEWORK 12

- 1. Use representation theory to prove that any group of order 4 is abelian.
- 2. Let $D_{10}=\langle a,b:a^5=b^2=e,b^{-1}ab=a^{-1}\rangle$. Prove that D_{10} has exactly two one-dimensional representations.

 $\it Hint:$ The element $\it a$ must map to a fifth root of 1.

- 3. Determine the number and dimensions of a complete set of nonisomorphic irreducible $\mathbb{C}G$ -modules when $G=D_{10}$.
- 4. Let V_1, \ldots, V_k be a complete set of non-isomorphic irreducible $\mathbb{C}G$ -modules, and let V and W be arbitrary $\mathbb{C}G$ -modules. For $1 \leq i \leq k$ define

$$d_i = \dim(\operatorname{Hom}_{\mathbb{CG}}(V, V_i))$$

and

$$e_i = \dim(\operatorname{Hom}_{\mathbb{C}G}(W, V_i)).$$

Prove that

$$\dim(\operatorname{Hom}_{\mathbb{C}G}(V,W)) = \sum_{i=1}^{k} d_i e_i.$$