MATH 473 WINTER 2019 HOMEWORK 17

- (1) Let χ_1 and χ_2 be distinct irreducible characters, and let $\chi = d_1\chi_1 + d_2\chi_2$ with $d_1, d_2 \in \mathbb{Z}$. Compute $\langle \chi, \chi \rangle$.
- (2) Let U_1, \ldots, U_r be a complete set of nonisomorphic irreducible $\mathbb{C}G$ -modules, and let χ_i be the character of U_i . Assume

 $V \cong U_1^{c_1} \oplus \dots \oplus U_r^{c_r}$

and

 $W \cong U_1^{d_1} \oplus \cdots \oplus U_r^{d_r},$

where U_i^n is the direct sum of *n* copies of U_i . Let χ be the character of *V* and ψ the character of *W*. Prove that if $\chi = \psi$ then $V \cong W$.

- (3) Let G be the subgroup of S_4 generated by the permutations (1 2) and (3 4). Let V be the permutation $\mathbb{C}G$ -module and let W be the regular $\mathbb{C}G$ -module. Determine (with proof) whether V and W are isomorphic.
- (4) Let χ_0 be the trivial character of G, and let χ_{reg} be the regular character. Prove that

 $\langle \chi_{\rm reg}, \chi_0 \rangle = 1.$