MATH 473 WINTER 2019 HOMEWORK 23

Let G = S₄ and let H be the subgroup ((1 2 3 4), (1 3)) of G. Note that H is isomorphic to the dihedral group of order 8.
For each irreducible character χ of G, express χ↓ H as a sum of irreducible

For each irreducible character χ of G, express $\chi \downarrow H$ as a sum of irreducible characters of H.

2. Let G be a group, and let H be a subgroup of G. Assume that H is abelian. Prove that for every irreducible character χ of G,

$$\chi(1) \le [G:H].$$

- 3. Let $G = D_{2n} = \langle a, b | a^n = b^2 = e, b^{-1}ab = a^{-1} \rangle$ be the dihedral group of order 2n. Prove that every irreducible character of G has degree one or two.
- 4. Let $G = D_{2n} = \langle a, b | a^n = b^2 = e, b^{-1}ab = a^{-1} \rangle$ be the dihedral group of order 2n. Let χ be an irreducible degree two character of G. Prove that for any integer m, if we let $g = a^m b \in G$, then $\chi(g) = 0$.