MATH 473 WINTER 2013 HOMEWORK 3

- 1. Let V be a vector space and let ϑ be an endomorphism of V. Show that ϑ is a projection if and only if there is a basis \mathscr{B} of V such that $[\vartheta]_{\mathscr{B}}$ is a diagonal matrix with all diagonal entries equal to 1 or 0.
- 2. Let $V = \mathbb{R}^3$, and let $U = \langle (1,2,3), (1,1,1) \rangle$ be a subspace of V. Determine a subspace W of V such that $V = U \oplus W$.
- 3. let $V = \mathbb{R}^3$, let $U = \langle (1,1,1), (1,1,0) \rangle$ and let $W = \langle (1,0,0) \rangle$. Let $\mathscr{B} = \{(1,0,0), (0,1,0), (0,0,1)\}$ be the standard basis of W. Determine the matrix $[\pi]_{\mathscr{B}}$ of the projection map $\pi : V \to V$ that has U as its image and W as its kernel.
- 4. Prove or disprove: Let V be a finite dimensional vector space over F, and let U be a subspace. Let $u \in U$, and $v \in V U$. Prove that there is a projection $\pi: V \to V$ with $\text{Im } \pi = U$ such that $v\pi = u$.