MATH 473 WINTER 2019 HOMEWORK 35

1. The character table of S_5 is:

	e	$(1\ 2)$	$(1\ 2)(3\ 4)$	$(1\ 2\ 3)$	$(1\ 2\ 3\ 4)$	$(1\ 2\ 3\ 4\ 5)$	$(1\ 2)(3\ 4\ 5)$
$ x^G $	1	10	15	20	30	24	20
χ_1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	-1	1	-1
χ_3	4	2	0	1	0	-1	-1
χ_4	4	-2	0	1	0	-1	1
χ_5	5	1	1	-1	-1	0	1
χ_6	5	-1	1	-1	1	0	-1
χ_7	6	0	-2	0	0	1	0

For each irreducible character χ_i of S_5 , determine $\iota \chi_i$.

2. Let $G = S_5$. Use corollary 23.17 to determine

$$|\{y \in G : y^2 = (1\ 2\ 3)\}|.$$

Confirm your answer by listing the elements whose square is (1 2 3).

- 3. Prove that every irreducible character of every group D_{2n} can be realized over the real numbers. (The character tables of these groups are given in chapter 18).
- 4. Let ρ be an irreducible representation of degree 2 of a group G and let χ be the character of ρ . Prove that $\chi_A(g) = \det(g\rho)$ for all $g \in G$. Prove also that $\iota \chi = -1$ if and only if $\det(g\rho) = 1$ for all $g \in G$.