MATH 473 WINTER 2019 HOMEWORK 4

1. Let G be the cyclic group of order m, say $G = \langle a : a^m = 1 \rangle$ > and let $A \in GL(n, \mathbb{C})$. Define $\rho: G \to GL(n, \mathbb{C})$ by

$$(a^r)\rho = A^r,$$

for $0 \le r < m$. Prove that ρ is a representation of G if and only if $A^m = 1$.

- 2. Prove that equivalence of representations is an equivalence relation.
- 3. Prove that if $\rho: G \to \operatorname{GL}(1, \mathbb{C})$ is a representation, then $G/\operatorname{Ker} \rho$ is an abelian group.
- 4. Find two nonequivalent faithful degree two representations of the cyclic group C_2 with two elements. Be sure to prove that the representations you find are nonequivalent.