MATH 473 WINTER 2019 HOMEWORK 5

1. Let $G = S_n$ and let V be an m-dimensional vector space over F (where $F = \mathbb{R}$ or \mathbb{C} . Then (see problem 4.2) V becomes an FG-module if we define

 $vg = \begin{cases} v & \text{if } g \text{ is an even permutation,} \\ -v & \text{if } g \text{ is an odd permutation.} \end{cases}$

Let B be a basis for V. Describe the representation ρ corresponding to the FG-module V and the basis B.

- 2. Consider $G = C_4$ as the subgroup of S_4 generated by the permutation (1 2 3 4). Describe the representation corresponding to the permutation module of G over $F = \mathbb{C}$ with respect to the natural basis.
- 3. With the same notation as problem 2, let $\{v_1, v_2, v_3, v_4\}$ be the natural basis. Describe the representation of *G* corresponding to the permuation module of *G* over $F = \mathbb{C}$ with respect to the basis $\{v_1 + v_2 + v_3 + v_4, v_1 + iv_2 - v_3 - iv_4, v_1 - v_2 + v_3 - v_4, v_1 - iv_2 - v_3 + iv_4\}.$
- 4. Let $G = C_3 = \langle a : a^3 = 1 \rangle$, and let $\rho : G \to \operatorname{GL}(2, F)$ be the representation defined by

$$a\rho = \begin{pmatrix} 0 & 1\\ -1 & -1 \end{pmatrix},$$

(see Example 5.5(1)). Prove that ρ is irreducible if $F = \mathbb{R}$, but that ρ is reducible if $F = \mathbb{C}$.

Hint: What are the dimensions of any possible subspaces of the FG-module arising from ρ , and how do such submodules relate to eigenvalues of $a\rho$?